Asbestos
Methods for Lifetime Excess Cancer Risk Estimates
Environmental exposures
Table of Contents

Methods Overview .. 2
Calculating Lifetime Hourly Concentrations ... 2
Standard Assumptions .. 2
Unit Risk Factors ... 3
Lifetime Excess Cancer Risk .. 4
Methods Overview
Lifetime excess cancer risk due to exposure to asbestos is calculated by first combining data on measured concentrations in outdoor air and indoor air with standard values for total hours spent outdoors and indoors over 70 years to estimate lifetime hourly concentration. Then, the lifetime hourly concentration is multiplied by a unit risk factor.

Multiplying the lifetime hourly concentration by a unit risk factor produces an estimate of the lifetime excess cancer risk.

Calculating Lifetime Hourly Concentrations
Lifetime hourly concentrations are calculated for each exposure pathway (outdoor air and indoor air) by multiplying the hourly concentration for every hour spent outdoors or indoors in each lifestage, then dividing by the total hours in a 70 year lifespan. For example:

Standard Assumptions
We assume these characteristics remain constant for each lifestage. This is rarely true for any single individual, but using a standard set of assumptions allows us to provide a relative ranking for known and suspected carcinogens across different exposure routes.
*assumed to be the same as ingestion rates for soil

Unit Risk Factors

There is a lot of uncertainty in predicting excess cancer risk in humans, but by using standard cancer potency factors, we can make relative comparisons between substances and exposure routes.

When the number of cancers increases in direct proportion to the intake (dose), it is possible to predict the number of cancers expected for any given intake, using the slope of the line that is the best fit for the data. Cancer potency factors are also called oral or inhalation slope factors.

Cancer potency factors are often developed using data that reflect relatively high intake levels. When intake levels are low, the best fit line must be extrapolated below the point of any observed data.

The cancer potency factors used by Health Canada, US EPA and California OEHHA assume a linear relationship and reflect the slope of the upper bound of the 95% confidence interval.

The real relationship between intake and the number of cancers may not always be linear. This adds uncertainty to the extrapolation of the cancer potency factor to intakes lower than those observed in the existing studies.
Lifetime Excess Cancer Risk

The potential lifetime excess cancer risk assumes that pollutant concentrations and intake rate remain the same for an entire lifetime of 70 years. For any one person, these exposures may change as they move from place to place. Using potential lifetime excess cancer risk allows us to make comparisons between pollutants and exposure routes, but does not allow us to estimate the actual risk for any one individual.

Potential lifetime excess cancer risk indicates how many additional cases of cancer would be expected in a population of 1 million people, given the input pollution concentrations and intake levels.

<table>
<thead>
<tr>
<th>LIFETIME EXCESS CANCER RISK</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000 per million people = One extra cancer per 100 people</td>
<td></td>
</tr>
<tr>
<td>1,000 per million people = One extra cancer per 1,000 people</td>
<td></td>
</tr>
<tr>
<td>100 per million people = One extra cancer per 10,000 people</td>
<td></td>
</tr>
<tr>
<td>10 per million people = One extra cancer per 100,000 people</td>
<td></td>
</tr>
<tr>
<td>1 per million people = One extra cancer per 1,000,000 people</td>
<td></td>
</tr>
<tr>
<td>0.1 per million people = One extra cancer per 10,000,000 people</td>
<td></td>
</tr>
<tr>
<td>0.01 per million people = One extra cancer per 100,000,000 people</td>
<td></td>
</tr>
<tr>
<td>0.001 per million people = One extra cancer per 1,000,000,000 people</td>
<td></td>
</tr>
<tr>
<td>0.0001 per million people = One extra cancer per 10,000,000,000 people</td>
<td></td>
</tr>
</tbody>
</table>