

Pentachlorophenol Environmental estimates (circa 2011): Supplemental data

Table of Contents

1. Data for lifetime excess cancer risk estimates	2
Overview	2
i. Environmental Concentrations	
ii. Calculated Lifetime Daily Intake	
iii. Cancer Potency Factors	
iv. Lifetime Excess Cancer Risk (per million people)	
Supporting data by exposure pathway	
i. Outdoor air	
ii. Indoor air	4
iii. Dust	5
iv. Drinking water	5
v. Food and Beverages	
2. Data quality for lifetime excess cancer risk estimates	g

1. Data for lifetime excess cancer risk estimates

Overview

The summary data used to calculate lifetime excess cancer risk and the results for pentachlorophenol are provided in the tables below. For more detailed information on supporting data and sources, see below for each exposure pathway.

i. Environmental Concentrations

Exposure pathway	Units	Average	Maximum	Notes
Outdoor air	μg/m³	0.0005825	0.0521	
Indoor air	μg/m³	0.00153	0.0733	
Dust	μg/g	0.2059	34	
Drinking water	μg/L		0.01	Maximum is the detection limit.
Food and beverages		See detailed data.	Not Estimated.	

ii. Calculated Lifetime Daily Intake

Exposure pathway	Average intake (mg/kg bodyweight per day)	Maximum intake (mg/kg bodyweight per day)
Outdoor air	0.000000135	0.0000012
Indoor air	0.0000050	0.000024
Dust	0.0000014	0.000022
Drinking water		0.0000026
Food and beverages	0.00000035	Not estimated

iii. Cancer Potency Factors

Exposure route	Health Canada	US EPA	CA OEHHA
Inhalation			0.018
Ingestion		0.4	0.018

Sources for Cancer Potency Factors:

- Health Canada, 2007 (draft). Federal Contaminated Site Risk Assessment in Canada, Part I: Guidance on Human Health Preliminary Quantitative Risk Assessment. Version 2.0.*
- Health Canada, 2007 (draft). Federal Contaminated Site Risk Assessment in Canada, Part II: Health Canada Toxicological Reference Values (TRVs). Version 2.0. *
 *Cited by Persistent Organic Pollutants Toolkit website.
- United States Environmental Protection Agency Integrated Risk Information System
- California Office of Environmental Health Hazard Assessment, 2009. Air Toxics Hot Spots Risk Assessment Guidelines Part II: Technical Support Document for Cancer Potency Factors, Appendix A.

iv. Lifetime Excess Cancer Risk (per million people)

		Average ¹		Maximum ²
Exposure pathway	Health Canada	US EPA	CA OEHHA ³	
Outdoor air			0.00024	0.0217
Indoor air			0.009	0.429
Dust		0.0541	0.002	0.1039
Drinking water				8.932
Food and beverages		0.0138	0.00062	Not estimated

¹Lifetime excess cancer risk based on average intake x cancer potency factor from each agency

Supporting data by exposure pathway

i. Outdoor air

Outdoor air concentrations are based on data published in peer-reviewed literature since 2000. A ranking system was used to select data most representative of Canadian conditions circa 2011:

- 1. Canadian data collected in 2000 or more recently, sample duration of 24 hours or longer;
- 2. US studies of similar currency and sample duration;
- 3. Studies from northern European countries of similar currency and sample duration;
- Canadian, US or European studies with data collected prior to 2000 and similar sample duration;
 and
- Studies with sample duration of less than 24 hours regardless of country or collection date, or studies from countries not comparable to Canada.

Rank: 2	Author	r: Wils	on (2007)				Location:	USA, North	Carolina and	d Ohio	
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
			2000-	μg/m³	48-hr						95 th
126	94		2001				0.0521		0.00091		0.0033
13	100					0.00035	0.0023		0.00077		0.0023
106	60						0.0116		0.00043		0.0041
13	54						0.0054		0.00022		0.0054

Notes: Values listed in the following order: NC Home. NC Daycare, OH Home, OH Daycare

Sources for outdoor air data:

• Wilson NK, Chuang JC, Morgan MK, Lordo RA, Sheldon LS. 2007. An observational study of the potential exposures of preschool children to pentachlorophenol, bisphenol-A, and nonylphenol at home and daycare. Environmental Research 103: 9-20

²Lifetime excess cancer risk based on maximum intake x highest cancer potency factor

³California Office of Environmental Health Hazard Assessment

^{*}DF = Detection frequency

^{**}DL = Detection limit

ii. Indoor air

Indoor air concentrations are based on data published in peer-reviewed literature since 2000. A ranking system was used to select data most representative of Canadian conditions circa 2011:

- 1. Canadian data collected in 2000 or more recently, sample duration of 24 hours or longer;
- 2. US studies of similar currency and sample duration;
- 3. Studies from northern European countries of similar currency and sample duration;
- Canadian, US or European studies with data collected prior to 2000 and similar sample duration;
 and
- Studies with sample duration of less than 24 hours regardless of country or collection date, or studies from countries not comparable to Canada.

Rank: 2	Author	: Kuma	r (2001)				Location:	Canada, AB			
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
68	65- 82%	0.00005	1999- 2001	μg/m³	24-hr		0.00282				

^{*}DF = Detection frequency

^{**}DL = Detection limit

Rank: 2	Autho	r: Rude	el (2003)				Location:	USA, Cape (Cod, MA		
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
120	58	0.001	1999- 2001	μg/m³	24-hr		0.034	0.0016			

^{*}DF = Detection frequency

^{**}DL = Detection limit

Rank: 2	Author	r: Wils	on (2007)				Location:	USA, North	Carolina and	d Ohio	
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
			2000-	μg/m³	48-hr						95 th
128	97		2001				0.0275		0.00150		0.0120
20	100					0.0005	0.0633		0.00116		0.0363
123	92						0.0733		0.00214		0.0183
22	68						0.0168		0.00132		0.0106

Notes: Values listed in the following order: NC Home. NC Daycare, OH Home, OH Daycare

Sources for indoor air data:

- Kumar Y. 2001. Pesticides in ambient air in Alberta. ISBN 0-7785-1889-4. Report prepared for the Air Research Users Group, Alberta Environment, Edmonton, Alberta.
- Rudel RA, Camann DE, Spenger JD, Korn LR, Brody JG. 2003. Phthalates, alkyphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environmental Science and Technology 37(20): 4543-4553.
- Wilson NK, Chuang JC, Morgan MK, Lordo RA, Sheldon LS. 2007. An observational study of the potential exposures of preschool children to pentachlorophenol, bisphenol-A, and nonylphenol at home and daycare. Environmental Research 103: 9-20.

^{*}DF = Detection frequency

^{**}DL = Detection limit

iii. Dust

Indoor dust concentrations are based on data published in peer-reviewed literature since 2000. A ranking system was used to select data most representative of Canadian conditions circa 2011:

- 1. Canadian data collected in 2000 or more recently, sample duration of 24 hours or longer;
- 2. US studies of similar currency and sample duration;
- 3. Studies from northern European countries of similar currency and sample duration;
- Canadian, US or European studies with data collected prior to 2000 and similar sample duration;
 and
- Studies with sample duration of less than 24 hours regardless of country or collection date, or studies from countries not comparable to Canada.

	Author	r: Rude	el (2003)				Location:	USA, Cape (Cod, MA		
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
118	0.86	0.3	1999- 2001	μg/g		7.96	34		0.793		

^{*}DF = Detection frequency

^{**}DL = Detection limit

Rank: 2	Autho	r: Wils	on (2007)				Location:	USA, North	Carolina an	d Ohio	
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
			2000-	μg/g	48-hr						95 th
121	0.92		2001				4.220		0.0598		0.492
20	1.0					0.00338	0.632		0.0813		0.407
119	0.94						2.250		0.0598		0.345
23	0.91						0.712		0.0356		0.165

Notes: Values listed in the following order: NC Home. NC Daycare, OH Home, OH Daycare

Sources for dust:

- Rudel RA, Camann DE, Spenger JD, Korn LR, Brody JG. 2003. Phthalates, alkyphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environmental Science and Technology 37(20): 4543-4553.
- Wilson NK, Chuang JC, Morgan MK, Lordo RA, Sheldon LS. 2007. An observational study of the potential exposures of preschool children to pentachlorophenol, bisphenol-A, and nonylphenol at home and daycare. Environmental Research 103: 9-20.

iv. Drinking water

Drinking water data are from the Ontario Drinking Water Surveillance Program (DWSP) for 2006. A review of published reports was also conducted in order to compare how well the Ontario data represented other regions in Canada.

^{*}DF = Detection frequency

^{**}DL = Detection limit

Source	Units	DL						
Intario DWSP 2006	(µg/L)	0.01						
110 DW3P 2000	(µg/L)	0.01						
ample Type	Parameter	Mean	SD	SD Min	SD Min 25 th	SD Min 25 th 50 th	SD Min 25th 50th 75th	SD Min 25 th 50 th 75 th Max
Treated Water		0.01	0.0	0.0 0.01	0.0 0.01 0.01	0.0 0.01 0.01 0.01	0.0 0.01 0.01 0.01 0.01	0.0 0.01 0.01 0.01 0.01 0.01
Treated Water		0.01	0.0	0.0	0.0 0.01	0.0 0.01 0.01	0.0 0.01 0.01 0.01	0.0 0.01 0.01 0.01 0.01

DL = Detection limit SD = Standard Deviation

v. Food and Beverages

Food consumption data are from the Statistics Canada Food Survey (2006) - Food available, adjusted for losses tables, and from the Nutrition Canada Survey (1970-1972).

Food concentration data are primarily from the US-FDA Total Diet Study (2003-2004), with additional data on metals and several PAHs from the Canadian Food Inspection Agency (CFIA) - National Chemical Residue Monitoring Program: 2009-2010 Annual Report and the US-FDA (TDS Statistics on Element Results - 2008).

In order to better represent actual intake, we incorporated data for cooked and/or processed foods, as in some cases, this can either add to or diminish the amount measured in raw food.

Concentration data were obtained for 6% of total meat consumed.

Food or Beverage	Concentration (µg/g)	DF	Food or Beverage	Concentration (μg/g)	DF
Beef			Peaches fresh		
Chicken	0.01000	0.02273	Pears canned		
Mutton and lamb			Pears fresh		
Offal			Pineapples canned		
Oils and fats			Pineapples fresh		
Pork			Plums total fresh		
Salad oils			Quinces fresh		
Shortening and shortening	g oils		Raspberries frozen		
Stewing hen	B =		Strawberries canned		
Turkey			Strawberries fresh		
Veal			Strawberries frozen		
Fish fresh and frozen seafi	ish		Sugar maple		
Fish freshwater			Sugar refined		
Fish processed seafish			Honey		
Apple pie filling			Artichokes fresh		
Apple sauce			Asparagus canned		
Apples canned			Asparagus fresh		
Apples dried			Avocados fresh		
Apples fresh			Beans baked and canned		
Apples frozen			Beans dry		
Apples I lozell			Beans green and wax can	and	
Apricots fresh			Beans green and wax fres		
Bananas fresh			Beans green and wax froz		
Berries other fresh			Beets canned	E11	
Blueberries canned			Beets fresh		
Blueberries fresh			Broccoli fresh		
Blueberries frozen			Broccoli frozen		
Cherries fresh			Brussels sprouts fresh		
Cherries frozen			Brussels sprouts frozen		
Citrus other fresh			Cabbage Chinese fresh		
Coconut fresh			Cabbage fresh		
Cranberries fresh			Carrots canned		
Dates fresh			Carrots fresh		
Figs fresh			Carrots frozen		
Fruit dried			Cauliflower fresh		
Grapefruit fresh			Cauliflower frozen		
Grapes fresh			Celery fresh		
Guava and mangoes fresh	1		Corn canned		
Kiwi fresh			Corn flour and meal		
Lemons fresh			Corn fresh		
Limes fresh			Corn frozen		
Mandarins fresh			Cucumbers fresh		
Melons musk, cantaloupe	fresh		Eggplant fresh		
Melons other fresh			Garlic fresh		
Melons watermelons fres	h		Kohlrabi fresh		
Melons, winter melons fre	esh		Leeks fresh		
Nectarines fresh			Lettuce fresh		
Oranges fresh			Lima beans frozen		
Papayas fresh			Manioc fresh		
Peaches canned			Mushrooms canned		

Concentration DF Food or Beverage Food or Beverage Concentration $(\mu g/g)$ $(\mu g/g)$ Mushrooms fresh Milk buttermilk Okra fresh Milk chocolate drink Olives fresh Milk concentrated skim Onions and shallots fresh Milk concentrated whole Parsley fresh Milk other whole milk products Parsnips fresh Milk partly skimmed 2% Peas canned Milk skim Milk standard Peas dry Peas fresh Milk sweetened concentrated skim Peas frozen Milkshake Peppers fresh Powder buttermilk Powder skim milk Potatoes chips Potatoes frozen Powder whey Potatoes other processed Sherbet Potatoes sweet fresh Yogurt Potatoes white fresh Cereal products Potatoes white fresh and processed Oatmeal and rolled oats Peanuts Pumpkins and squash fresh Radishes fresh Pot and pearl barley Rappini fresh Pulses and nuts Rutabagas and turnip fresh Rice Spinach fresh Rye flour Spinach frozen Tree nuts Wheat flour Tomatoes canned Tomatoes fresh Ale, beer, stout and porter Tomatoes pulp, paste and puree Beverages alcoholic Coffee Vegetables other edible root fresh Distilled spirits Vegetables other leguminous fresh Vegetables unspecified canned Juice apple Vegetables unspecified fresh Juice grape Vegetables unspecified frozen Juice tomato Juice fruit Butter Cheese cheddar Juice grapefruit Cheese cottage Juice lemon Cheese processed Juice orange Cheese variety Juice pineapple Cream cereal 10% Juice vegetable Cream sour Soft drinks Cream table 18% Tea Water bottled Cream whipping 32% or 35% Wines Eggs Ice cream Cocoa Ice milk Margarine

2. Data quality for lifetime excess cancer risk estimates

Only publicly available data were used to calculate these indicators. Data that are not publicly available may produce different results.

No systematic method for measuring data quality was possible, so we provide the following assessments of how well the data used may represent the actual Canadian average levels. Quality is rated higher when there are data from a number of Canadian monitors, or from Canadian studies that show results similar to other comparable studies. Quality is rated lower when data from few monitors or studies were available, and lowest when estimates are based on non-Canadian data. Others may rate data quality differently.

Exposure Pathway	Data Quality	Notes
Outdoor air	Very Low	 No recent Canadian data or studies identified using appropriately accurate analytical methods. A study measuring pentachlorophenol levels outside of homes and daycares in the US (NC and OH) in 2000-2001 are used for estimates.
Indoor air	Very Low	 One Canadian study identified (2001) which detected maximum concentrations a magnitude lower than two US studies in NC and OH (2007) and MA (2003).
Indoor dust	Very Low	 No recent Canadian data or studies identified using appropriately accurate analytical methods. Two US studies were identified. Concentrations in MA (2003) were a magnitude higher than in NC and OH (2007). Data from these studies are used for estimates, but very low data quality is noted.
Drinking water	Very Low	 Only one sample was noted as being tested for pentachlorophenol in the Ontario Drinking Water Surveillance Program in 2010. It was not detected in any samples (n=54) of treated drinking water, based on data from the Ontario Drinking Water Surveillance Program in 2006. The detection limit was 0.01 µg/L. No other data were identified.
Food and beverages	Very Low	 No Canadian data on concentrations of pentachlorophenol in foods and beverages were identified. Data from the US-FDA (TDS-2003-2004) were used for this estimate.