

Outdoor Air Pollution Environmental estimates (circa 2011): Supplemental data

Table of Contents

1.	Data for lifetime excess cancer risk estimates	
0	Overview	2
	Supporting data by exposure pathway	
-	i. Outdoor air	
	ii. Indoor air	3
2.	Data quality for lifetime excess cancer risk estimates	6
3.	Data for mapping concentrations	7
E	Estimates by health region	7
	Estimates by census block	

1. Data for lifetime excess cancer risk estimates

Overview

Calculating lifetime excess cancer risk requires an estimate of intake and a cancer potency factor. No published cancer potency factors for inhalation of particulate air pollution are available from Health Canada, the California Office of Environmental Health Hazard Assessment (OEHHA), or the US Environmental Protection Agency (US EPA) during our review. An estimate of lifetime excess cancer risk for inhalation of diesel engine exhaust, which is a source of particulate air pollution, is available.

Particulates $_{2.5}$ µm in diameter or less (PM_{2.5}) are most often associated with adverse health effects. Particles of this size can be inhaled deeply into the lungs and a wide range of known or suspected carcinogens may be adhered to them. PM_{2.5} is measured in outdoor air by National Air Pollution Surveillance monitors, and several Canadian studies have measured levels in indoor air.

Supporting data by exposure pathway

i. Outdoor air

Outdoor air concentrations are from the National Air Pollution Surveillance monitoring network operated by Environment Canada, for the year 2011.

Source	Stations (n)	Min	Max	Mean	DF
NAPS 2011 (µg/m³)	204*	1.7	16.1	6.9	1.0

* adjusted TEOM levels

DF = Detection frequency

We assume $PM_{2.5}$ is present at these levels in all outdoor air, although concentrations may vary from one location to another.

ii. Indoor air

Indoor air concentrations are based on data published in peer-reviewed literature since 2000. The following table summarizes measurements of PM_{2.5} in indoor air in Canada:

Data Source(s):	Min	Max	Mean	DF
Allen (2009); Heroux (2010); Hystad (2007); Loo (2010); Wheeler (2011); Miller (2007)	1.0	136.0	9.2	1.0

DF = Detection frequency

A ranking system was used to select data most representative of Canadian conditions circa 2011:

- 1. Canadian, data collected in 2000 or more recently, sample duration of 24 hours or longer;
- 2. US studies of similar currency and sample duration;
- 3. Studies from northern European countries of similar currency and sample duration;
- Canadian, US or European studies with data collected prior to 2000 and similar sample duration; and
- Studies with sample duration of less than 24 hours regardless of country or collection date, or studies from countries not comparable to Canada.

We assume $PM_{2.5}$ is present at these levels in all indoor air, although concentrations may vary from one location to another.

Rank: 1	Autho	r: Alle	n (2009)				Location:	Smithers, B	ritish Colun	nbia	
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
9			2007-	µg/m³	6 days	1.3	35.2	10.9	6.9		95 th 31.1
9			2008			0.8	60.6	14.6	9.6		95 th 52.4

Notes: Values listed in the following order: pre-wood stove upgrade, post-wood stove upgrade

*DF = Detection frequency

**DL = Detection limit

Rank: 1	Autho	or: Here	oux (2010)				Location:	Regina, Sas	katchewan		
Samples	DF*	DL**	Sample	Units	Sample	Min	Max	Mean	Med	Geomean	Percentile
(n)			Date		Duration			(AM)		(GM)	
95			2007	µg/m³	10	0.88	92.12	9.42		5.46	95 th 36.34
105					weeks	1.00	82.09	9.51		6.43	95 th 33.93
76						0.88	27.91	5.47		4.13	95 th 15.37
91						1.00	24.92	6.18		5.32	95 th 13.30

Notes: Values listed in the following order: winter, summer, non-smoking winter, non-smoking summer

*DF = Detection frequency

**DL = Detection limit

	Author	: Hyst	ad (2007)				Location:	Victoria, Br	itish Colum	bia	
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
73			2007	µg/m³	5 days			7.90	6.94		10 th 3.64 25 th 5.30 75 th 10.55 90 th 13.14
*DF = Dete	ction freq	uency									

**DL = Detection limit

Image: Constraint of the state of	Rank: 1	Autho	or: Loo	(2010)				Location:	Toronto, Or	ntario	
		DF*	DL**		Units		Min	Max		Med	Percentile
2007	60			2006- 2007	µg/m³	6 days			9.2	7.8	

DF = Detection frequency

**DL = Detection limit

Rank: 1	Autho	r: Whe	eler (2011)				Location:	Toronto, Or	ntario		
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
230			2005/	µg/m³	5 days	2.4	136	7.9	5.8	6.4	95 th 27.3
202			2006			3.2	49	10.2	8.6	8.9	95 th 23.0
228						2.8	53	8.0	6.3	6.9	95 th 19.2
218						2.9	70	8.4	6.9	7.3	95 th 22.2
*DF = Dete	ction fre	quency									

**DL = Detection limit

1

Rank: 1	Autho	r: Mille	er (2007)				Location:	Ottawa, Onta	rio		
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentil
20			2002	µg/m³	7 days	2.9	27.2	8.9	6.7	7.0	
Notes: 10 u *DF = Dete **DL = Dete	ction fre	quency	omes measure	d during a pe	eriod of snow co	over (-10 de	egrees celsius)				
Rank: 3	Autho	r: Raas	chou-Nielser	n (2010)			Location:	Copenhagen,	Denmark		
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentil
			1999-	μg/m³	7 days			17.7	12.7		95th 53.
			2003	μg/m-							
DF = Dete *DL = Dete		nit		μg/ш-			Location:	Boston, MA			
DF = Dete *DL = Dete tank: 4	ectionlin	nit	2003	Units	Sample Duration	Min	Location: Max	Boston, MA Mean (AM)	Med	Geomean (GM)	Percenti
DF = Deter *DL = Dete tank: 4 amples	ection lin Autho	nit r: Brov	2003 vn (2008) Sample			Min 2.4		Mean	Med		
DF = Deter DL = Deter Rank: 4 Samples (n) 25 25	Autho	nit r: Brov DL**	2003 vn (2008) Sample Date 1999- 2000	Units µg/m³	Duration 7 days		Max	Mean (AM)	Med	(GM)	95 th 19.
*DF = Deter **DL = Deter Rank: 4 Samples (n) 25 25	ection lin Autho DF* es listed ction free	nit T: Brow DL** lin the follo quency nit	2003 (n (2008) Sample Date 1999- 2000 wing order: wi	Units µg/m³	Duration 7 days	2.4	Max 28.0	Mean (AM) 10.1 12.0	Med	(GM) 7.3	Percenti 95th 19. 95th 26.
DF = Deter *DL = Deter Rank: 4 Gamples (n) 25 25 Rotes: Valu DF = Deter *DL = Deter Rank: 4	ection lin Autho DF* es listed ction free ection lin Autho	nit T: Brow DL** lin the follo quency nit r: Kim	2003 (n (2008) Sample Date 1999- 2000 wing order: wi (2006)	Units µg/m³ inter, summe	Duration 7 days	2.4 1.1	Max 28.0 45.0 Location:	Mean (AM) 10.1 12.0 Toronto, ON		(GM) 7.3 10.3	95th 19. 95th 26.
DF = Deter *DL = Deter tank: 4 camples (n) 25 25 lotes: Valu DF = Deter *DL = Deter	ection lir Autho DF* es listed ction free ection lir	nit T: Brow DL** lin the follo quency nit	2003 (n (2008) Sample Date 1999- 2000 wing order: wi	Units µg/m³	Duration 7 days	2.4	Max 28.0 45.0	Mean (AM) 10.1 12.0	Med	(GM) 7.3	95 th 19.

**DL = Detection limit

Sources for indoor air data:

- Allen R.W., Leckie S., Millar G., Brauer M. 2009. The impact of woode stove technology upgrades on indoor residential air quality. Atmospheric Environment, 43(37): 5908-5915.
- Brown K.W., Sarnat J.A., Suh H.H., Coull B.A., Spengler J.D., Koutrakis P. 2008. Ambient site, home outdoor and home indoor particulate concentrations as proxies of personal exposures. Journal of Environmental Monitoring, 10(9): 1041-1051.
- Heroux M.E., Clark N., Van Ryswyk K., Mallick R., Gilbert N.L., Harrison I., Rispler K., Wang D., Anastassopoulos A., Guay M., MacNeill M., Wheeler, A. J. 2010. Predictors of Indoor Air Concentrations in Smoking and Non-Smoking Residences. International Journal of Environmental Research and Public Health, 7(8): 3080-3099.
- Hystad P.W. 2007. Modeling residential fine particulate matter infiltration: implications for exposure assessment. Masters of Science Thesis, Department of Geography, University of Victoria, BC, Canada.

- Kim D., Sass-Kortsak A., Purdham J.T., Dales R.E., Brook J.R. 2006. Associations between personal exposures and fixed-site ambient measurements of fine particulate matter, nitrogen dioxide, and carbon monoxide in Toronto, Canada. Journal of Exposure Science and Environmental Epidemiology, 16(2): 172-183.
- Loo C.K.J., Foty R.G., Wheeler A.J., Miller D.J., Evans G., Stieb D.M., Dell S.D. 2010. Do questions reflecting indoor air pollutant exposure from a questionnaire predict direct measure of exposure in owner-occupied houses? Int. J. Environ. Res. Public Health, 7: 3270-3297.
- Miller J.D., Dugandzic R., Frescura A-M, Salares V. 2007. Indoor- and outdoor-derived contaminants in urban and rural homes in Ottawa, Ontario, Canada. Journal of Air & Waste Management Association, 57(3): 297-302.
- Raaschou-Nielsen O., Hermansen M.N., Loland L., Buchvald F., Pipper C.B., Sørensen M., Loft S., Bisgaard H. 2010. Long-term exposure to indoor air pollution and wheezing symptoms in infants. Indoor Air, 20: 159-167.
- Wheeler A.J., Wallace L.A., Kearney J., Van Ryswyk K., You H., Kulka R., Brook J.R., Xu X. 2011. Personal, indoor, and outdoor concentrations of fine and ultrafine particles using continuous monitors in multiple residences. Aerosol Science and Technology, 45: 1078-1089.

2. Data quality for lifetime excess cancer risk estimates

Only publicly available data were used to determine average and maximum concentrations in outdoor and indoor air.

No systematic method for measuring data quality was possible, so we provide the following assessments of how well the data used may represent the actual Canadian average levels. Quality is rated higher when there are data from a number of Canadian monitors, or from Canadian studies that show results similar to other comparable studies. Quality is rated lower when data from few monitors or studies were available, and lowest when estimates are based on non-Canadian data. Others may rate data quality differently.

Exposure Pathway	Data Quality	Notes
Outdoor air	High	 PM_{2.3} is regularly measured in outdoor air at 204 monitoring stations across Canada using accepted protocols.
Indoor air	Moderate	 Five recent Canadian studies were identified (Smithers BC, Regina SK, Victoria BC, Toronto ON, and Ottawa ON) which had similar mean concentration levels.

3. Data for mapping concentrations

The maps use geographic coordinates at the census block level to represent residential locations. Concentration estimates are mapped at the health region level, which are created with aggregated census block data.

We used a model to predict annual average concentrations of PM_{2.5} in outdoor air at residential locations for 2011. These are predicted using levels measured from the National Air Pollution Surveillance (NAPS) monitors and estimated concentrations from known emitters. For more information on how these estimates were created, please see the Mapping Methods document on the <u>Environmental Approach</u> section of our website.

Estimates by health region

The table below shows predicted $PM_{2.5}$ concentrations by province based on data at the health region level. The median concentration of $PM_{2.5}$ measured in outdoor air in 2011 at the health region level was 6.630 µg/m³, while the mean concentration was 6.854 µg/m³. Concentrations of $PM_{2.5}$ can be higher or lower than average in many locations.

i. Provincial averages of predicted $PM_{2.5}$ concentrations ($\mu g/m^3$) in outdoor air in 2011 based on health regions

Province	Median	Mean
ВС	6.891	6.961
AB	7.396	7.649
SK	5.743	5.884
MB	6.379	6.466
ON	6.692	6.693
QC	7.591	8.004
NB	6.838	6.879
PE	6.377	6.377
NS	6.250	6.211
NL	6.144	6.358
ҮК	6.971	6.971
NT	5.929	5.929
NU	6.703	6.703
Canada	6.630	6.854

Estimates by census block

The table below shows provincial populations by concentration levels (either annual average or number of times above/below the national average) based on the census block data and the associated potential lifetime excess risk given different cancer potency factors.

ii. Provincial population distribution by estimated average concentration (μg/m³) of particulate matter (PM_{2.5}) in outdoor air in 2011 based on NAPS data at the census block

Estimated annual average concentration (µg/m ³)	Less than 2.30	2.3 to 2.76	2.76 to 3.45	3.45 to 4.6	4.6 to 6.9	6.9 to 10.35	10.35 to 13.8	13.8 to 17.25	17.25 to 20.7	More than 20.7
Compared to national average	>3x lower	2.5 to 3x lower	2 to 2.5x lower	1.5 to 2x lower	1 to 1.5x lower	1 to 1.5x higher	1.5 to 2x higher	2 to 2.5x higher	2.5 to 3x higher	>3.0x higher
(6.90µg/m³)*	←		B	elow Ave	rage	Above	Average			\longrightarrow
BC			10,306 (0.2%)	942,965 (21.4%)	2,035,840 (46.3%)	1,104,554 (25.1%)	149,813 (3.4%)	109,128 (2.5%)	34,827 (0.8%)	12,624 (0.3%)
AB	5 (<0.1%)		4,896 (0.1%)	111,927 (3.1%)	848,997 (23.3%)	1,920,933 (52.7%)	461,634 (12.7%)	228,210 (6.3%)	37,251 (1.0%)	31,404 (0.9%)
SK					622,782 (60.3%)	398,536 (38.6%)	7,096 (0.7%)	490 (<0.1%)	2,014 (0.2%)	2,463 (0.2%)
MB					647,572 (53.6%)	539,029 (44.6%)	9,979 (0.8%)	10,959 (0.9%)	729 (0.1%)	
ON			27,346 (0.2%)	488,689 (3.8%)	7,226,123 (56.2%)	4,473,985 (34.8%)	407,269 (31.7%)	85,178 (0.7%)	96,703 (0.8%)	46,528 (0.4%)
QC		10,622 (0.1%)	3,117 (<0.1%)	126,036 (1.6%)	1,306,717 (16.5%)	3,601,313 (45.6%)	2,138,800 (27.1%)	524,493 (6.6%)	89,713 (1.1%)	102,190 (1.3%)
NB				83,475 (11.1%)	512,834 (68.3%)	118,219 (15.7%)	7,944 (1.1%)	13,841 (1.8%)	10,578 (1.4%)	4,280 (0.6%)
NS				140,534 (15.2%)	648,579 (70.4%)	114,770 (12.5%)	7,992 (0.8%)	4,992 (0.5%)	3,550 (0.4%)	1,310 (0.1%)
PE					84,787 (60.5%)	55,087 (39.3%)	330 (0.2%)			
NL				23,121 (4.5%)	386,881 (75.2%)	90,782 (17.6%)	4,512 (0.9%)	5,147 (1.0%)	4,093 (0.8%)	0 (<0.1%)
NU					25,207 (79.0%)		5,525 (17.3%)	1,174 (3.7%)		
NT			50 (0.1%)	1,502 (3.6%)	25,063 (60.4%)	14,388 (3.5%)	459 (1.1%)			
YT					8,207 (24.2%)	23,025 (67.9%)	2,648 (7.8%)	17 (<0.1%)		
CANADA	5	10,622	45,715		14,379,589	12,454,621	3,204,001	983,629	279,458	200,799
% of pop.	(<0.1%)	(<0.1%)	(0.1%)	(5.7%)	(42.9%)	(37.2%)	(9.6%)	(2.9%)	(0.8%)	(0.6%)

ASSOCIATED LIFETIME EXCESS CANCER RISK (per million people): RED = POTENTIAL LIFETIME EXCESS RISK IS GREATER THAN 1 PER MILLION PEOPLE

* measured at National Air Pollution Surveillance (NAPS) monitors in 2011