

Indeno[1,2,3-cd]pyrene Environmental estimates (circa 2011): Supplemental data

Table of Contents

1.	Dat	a for lifetime excess cancer risk estimates	. 2
(Dvervi	ew	2
	i.	Environmental Concentrations	2
	ii.	Calculated Lifetime Daily Intake	
	iii.	Cancer Potency Factors	2
	iv.	Lifetime Excess Cancer Risk (per million people)	
9	Suppo	rting data by exposure pathway	3
	i.	Outdoor air	3
	ii.	Indoor air	
	iii.	Dust	5
	iv.	Drinking water	6
	٧.	Food and Beverages	6
2.	Dat	a quality for lifetime excess cancer risk estimates	. 9
3.	Dat	a for mapping concentrations	10
E	Estima	tes by health region	10
E	stima	tes by census block	10

1. Data for lifetime excess cancer risk estimates

Overview

The summary data used to calculate lifetime excess cancer risk and the results for indeno(1,2,3-cd)pyrene are provided in the tables below. For more detailed information on supporting data and sources, see below for each exposure pathway.

i. Environment	tal Concentra	ations		
Exposure pathway	Units	Average	Maximum	Notes
Outdoor air	µg/m³	0.0001	0.00058	
Indoor air	µg/m³	0.00044	0.0018	
Dust	μg/g	3.07	33.5	
Drinking water	μg/L			Insufficient data
Foods and beverages		See detailed data	Not estimated	

ii. Calculated Lifetime Daily Intake

Exposure pathway	Average intake (mg/kg bodyweight per day)	Maximum intake (mg/kg bodyweight per day)
Outdoor air	0.000000023	0.00000013
Indoor air	0.0000014	0.0000058
Dust	0.000020	0.000022
Drinking water	Insuffic	cient data
Foods and beverages	0.0000001	Not estimated

iii. Cancer Potency Factors

Exposure route	Health Canada	US EPA	CA OEHHA
Inhalation			0.39
Ingestion			1.2

Sources for Cancer Potency Factors:

- Health Canada, 2010. Federal Contaminated Site Risk Assessment in Canada, Part I: Guidance on Human Health Preliminary Quantitative Risk Assessment. Version 2.0.
- Health Canada, 2010. Federal Contaminated Site Risk Assessment in Canada, Part II: Health Canada Toxicological Reference Values (TRVs) and Chemical-Specific Factors. Version 2.0.
- United States Environmental Protection Agency Integrated Risk Information System
- California Office of Environmental Health Hazard Assessment, 2009. Air Toxics Hot Spots Risk Assessment Guidelines Part II: Technical Support Document for Cancer Potency Factors, Appendix A. (Updated 2011)

iv. Lifetime Excess Cancer Risk (per million people)

		Average ¹		Maximum ²
Exposure pathway	Health Canada	US EPA	CA OEHHA ³	
Outdoor air			0.0009	0.0053
Indoor air			0.056	0.23
Dust			2.42	26.40
Drinking water		Insufficient data		
Foods and beverages				Not estimated

¹Lifetime excess cancer risk based on average intake x cancer potency factor from each agency ²Lifetime excess cancer risk based on maximum intake x highest cancer potency factor

³California Office of Environmental Health Hazard Assessment

Supporting data by exposure pathway

i. Outdoor air

Outdoor air concentrations are from the National Air Pollution Surveillance monitoring network operated by Environment Canada, for the year 2010.

Source	Stations (n)	Min	Max	Mean	DF
NAPS 2010 (μg/m³)	17	0.000019	0.00058	0.0001	1.0

DF = Detection frequency

We assume indeno(1,2,3-cd)pyrene is present at these levels in all outdoor air, although concentrations may vary from one location to another.

ii. Indoor air

Indoor air concentrations are based on data published in peer-reviewed literature since 2000. A ranking system was used to select data most representative of Canadian conditions circa 2011:

- 1. Canadian data collected in 2000 or more recently, sample duration of 24 hours or longer;
- 2. US studies of similar currency and sample duration;
- 3. Studies from northern European countries of similar currency and sample duration;
- Canadian, US or European studies with data collected prior to 2000 and similar sample duration; and
- Studies with sample duration of less than 24 hours regardless of country or collection date, or studies from countries not comparable to Canada.

Rank: 2	Author:	Jung (2	2010)				Location:	n: New York City			
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomea (GM)	an Percentil
203			2005 -	µg/m³	14 days	0.00005	0.0022	0.00043	5 0.00035	0.0002	6
98			2010			0.00002	0.001	0.0004	0.00016	5	
	ectionlimit										
Rank: 2	Author:	Li (200	5)				Location:	Chicago			
Rank: 2 Samples (n)			5) Sample Date	Units	Sample Duration	Min	Location: Max	Chicago Mean (AM)	Med	Geomean (GM)	Percentile
Samples	Author:	Li (200	Sample Date 2000 -	Units µg/m³	Duration 48h x 14	Min 0.000001		Mean (AM)	Med .00045		10th 0.000001
Samples (n)	Author: DF*	Li (200	Sample Date		Duration		Max	Mean (AM)			

Notes: non-smoking homes, (sampled once a month for 14 months) total n = 115

*DF = Detection frequency

**DL = Detection limit

Rank: 3	Author	: Gustaf	son (2008)				Location:	Hagorfs, Sw	veden		
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
13	1	0.00005	Feb-	µg/m³	24hr	0.00005	0.0028	0.00061	0.00028		
10	0.8		March 2003			<dl< td=""><td>0.00017</td><td>0.00010</td><td>0.00010</td><td></td><td></td></dl<>	0.00017	0.00010	0.00010		

Notes: Values listed in the following order: wood-burning, non-wood burning homes.

*DF = Detection frequency

**DL = Detection limit

Rank: 4	Author:	Sande	rson (2004)				Location:	Beauharnoi	s, Quebec		
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
3	0.84	0.00001		µg/m³	24h			0.00031			
12								0.0002		0.000073	

Notes: near aluminum smelter, Values listed in the following order: homes with oil heating, with no oil heating *DF = Detection frequency

**DL = Detection limit

Sources for indoor air data:

- Gustafson P, Östman C, Sällsten G. 2008. Indoor levels of polycyclic aromatic hydrocarbons in homes with or without wood burning for heating. Environ Sci Technol 42: 5074-5080.
- Jung K, Patel MM, Kinney PL, Chillrud SN, Whyatt R, Hoepner L, et al. 2010. 1. Effects of Season and Indoor Heating on Indoor and Outdoor Residential Levels of Airborne Polycyclic Aromatic Hydrocarbons, Absorbance and Particulate Matter 2.5 in an Inner City Cohort of Young Children. Journal of Allergy and Clinical Immunology 125: AB81.

- Li A, Schoonover TM, Zou QM, Norlock F, Conroy LM, Scheff PA, et al. 2005. Polycyclic aromatic hydrocarbons in residential air of ten Chicago area homes: Concentrations and influencing factors. Atmospheric Environment 39: 3491-3501.
- Sanderson EG, Farant JP. 2004. Indoor and outdoor polycyclic aromatic hydrocarbons in residences surrounding a Soderberg aluminum smelter in Canada. Environ Sci Technol 38: 5350-5356.

iii. Dust

Indoor dust concentrations are based on data published in peer-reviewed literature since 2000. A ranking system was used to select data most representative of Canadian conditions circa 2011:

- 1. Canadian data collected in 2000 or more recently, sample duration of 24 hours or longer;
- 2. US studies of similar currency and sample duration;
- 3. Studies from northern European countries of similar currency and sample duration;
- Canadian, US or European studies with data collected prior to 2000 and similar sample duration; and
- 5. Studies with sample duration of less than 24 hours regardless of country or collection date, or studies from countries not comparable to Canada.

Rank: 1	Author:	Maert	ens (2008)				Location:	Ottawa, Car	nada		
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
51	1.0	0.039	2002 - 2003	μg/g		0.1	33.5	3.07	0.91	1.29	

Notes: Analyzed using GC/MS

*DF = Detection frequency

**DL = Detection limit

Rank: 2	Author:	White	head (2011)				Location:	California,	USA		
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
583	0.998	0.002	2001- 2007	µg/g		<dl< td=""><td>2.371</td><td></td><td>0.053</td><td></td><td></td></dl<>	2.371		0.053		
Notes: Anal *DF = Dete **DL = Det	ction freque										
Rank: 2	Author:	Hoh (2	012)				Location:	San Diego (County, CA,	USA	
Samples	DF*	DL**	Sample	Units	Sample	Min	Max	Mean	Med	Geomean	Percentile

Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile	
43	1.0		2005- 2007	µg/g		0.00482	0.171		0.0365		25 th 0.0224 75 th 0.0593	
89	1.0					<dl< td=""><td>0.528</td><td></td><td>0.0586</td><td></td><td>25th 0.0310 75th 0.0949</td><td></td></dl<>	0.528		0.0586		25 th 0.0310 75 th 0.0949	
Notes: Analy	zed using (SC/MS										

Notes: Analyzed using GC/M

*DF = Detection frequency

**DL = Detection limit

Sources for dust:

- Hoh E, Hunt RN, Quintana PJE, Zakarian JM, Chatfield DA, Wittry BC, Rodriguez E, Matt GE. 2012. Environmental tobacco smoke as a source of polycyclic aromatic hydrocarbons in settled house dust. Environ Sci Technol 46: 4174-4183.
- Maertens RM, Yang XF, Zhu JP, Gagne RW, Douglas GR, White PA. 2008. Mutagenic and carcinogenic hazards of settled house dust I: Polycyclic aromatic hydrocarbon content and excess lifetime cancer risk from preschool exposure. Environmental Science & Technology 42: 1747-1753.
- Whitehead T, Metayer C, Gunier RB, Ward MH, Nishioka MG, Buffler P, Rappaport SM. 2011. Determinants of polycyclic aromatic hydrocarbon levels in house dust. J Expo Sci Environ Epidemiol 21(2): 123-132.

iv. Drinking water

No recent data or studies were identified.

v. Food and Beverages

Food consumption data are from the Statistics Canada Food Statistics Report (2006) - Food available, adjusted for losses tables, and from the Nutrition Canada Survey (1970-1972).

Food concentration data are from the US Total Diet Study (2003-2004), and the US EPA's Dietary Exposure Potential Models (v5.0 2003), with the exception of data on metals, which are from the Canadian Food Inspection Agency (2004-2005).

In order to better represent actual intake, we incorporated data for cooked and/or processed foods, as in some cases this can either add to or diminish the amounts of a substance measured in raw food.

Concentration data were obtained for 54% of total seafood consumed.

Food or Beverage	Concentration (µg/g)	DF	Food or Beverage	Concentration (µg/g)	DF
Beef			Peaches fresh		
Chicken			Pears canned		
Mutton and lamb			Pears fresh		
Offal			Pineapples canned		
Oils and fats			Pineapples fresh		
Pork			Plums total fresh		
Salad oils			Quinces fresh		
Shortening and shortening oi	Is		Raspberries frozen		
Stewing hen	13		Strawberries canned		
Turkey			Strawberries fresh		
Veal			Strawberries frozen		
Fish fresh and frozen seafish	0.04671	0.0157	Sugar maple		
Fish freshwater			Sugar refined		
Fish processed seafish	0.04168	0.0132	Honey		
			Artichokes fresh		
Apple pie filling Apple sauce					
			Asparagus canned		
Apples canned			Asparagus fresh		
Apples dried			Avocados fresh Beans baked and canned		
Apples fresh					
Apples frozen			Beans dry		
Apricots canned			Beans green and wax can		
Apricots fresh			Beans green and wax fres		
Bananas fresh			Beans green and wax froz	ten	
Berries other fresh			Beets canned		
Blueberries canned			Beets fresh		
Blueberries fresh			Broccoli fresh		
Blueberriesfrozen			Broccoli frozen		
Cherries fresh			Brussels sprouts fresh		
Cherries frozen			Brussels sprouts frozen		
Citrus other fresh			Cabbage Chinese fresh		
Coconut fresh Cranberries fresh			Cabbage fresh Carrots canned		
			Carrots fresh		
Dates fresh					
Figs fresh			Carrots frozen Cauliflower fresh		
Fruit dried					
Grapefruit fresh			Cauliflower frozen		
Grapes fresh			Celery fresh		
Guava and mangoes fresh			Corn canned		
Kiwi fresh			Corn flour and meal		
Lemons fresh			Corn fresh		
Limes fresh			Corn frozen		
Mandarins fresh			Cucumbers fresh		
Melons musk, cantaloupe fre	sh		Eggplant fresh		
Melons other fresh			Garlic fresh		
Melons watermelons fresh			Kohlrabi fresh		
Melons, winter melons fresh			Leeksfresh		
Nectarines fresh			Lettuce fresh		
Oranges fresh			Lima beans frozen		
Papayas fresh			Manioc fresh		
Peaches canned			Mushrooms canned		

Food or Beverage	Concentration (µg/g)	DF	Food or Beverage	Concentration (µg/g)	DF
Mushrooms fresh			Milk buttermilk		
Okra fresh			Milk chocolate drink		
Olives fresh			Milk concentrated skim		
Onions and shallots fresh	n		Milk concentrated whole		
Parsley fresh			Milk other whole milk pr	oducts	
Parsnips fresh			Milk partly skimmed 2%		
Peas canned			Milk skim		
Peas dry			Milk standard		
Peas fresh			Milk sweetened concentr	ated skim	
Peas frozen			Milkshake		
Peppers fresh			Powder buttermilk		
Potatoes chips			Powder skim milk		
Potatoes frozen			Powder whey		
Potatoes other processe	d		Sherbet		
Potatoes sweet fresh			Yogurt		
Potatoes white fresh			Cereal products		
Potatoes white fresh and	processed		Oatmeal and rolled oats		
Pumpkins and squash fre			Peanuts		
Radishes fresh	-211		Pot and pearl barley		
Rappini fresh			Pulses and nuts		
Rutabagas and turnip fre	sh		Rice		
Spinach fresh			Rye flour		
Spinach frozen			Tree nuts		
Tomatoes canned			Wheat flour		
Tomatoes fresh			Ale, beer, stout and port	er	
Tomatoes pulp, paste an	d puree		Beverages alcoholic		
Vegetables other edible			Coffee		
Vegetables other legumi			Distilled spirits		
Vegetables unspecified o			Juice apple		
Vegetables unspecified f			Juice grape		
Vegetables unspecified f			Juice tomato		
Butter			Juice fruit		
Cheese cheddar			Juice grapefruit		
Cheese cottage			Juice lemon		
Cheese processed			Juice orange		
Cheese variety			Juice pineapple		
Cream cereal 10%			Juice vegetable		
Cream sour			Soft drinks		
Cream table 18%			Tea		
Cream whipping 32% or 3	35%		Water bottled		
Eggs			Wines		
lce cream			Сосоа		
Ice milk					
Margarine					
and Barrie					

2. Data quality for lifetime excess cancer risk estimates

Only publicly available data were used to calculate these indicators. Data that are not publicly available may produce different results.

No systematic method for measuring data quality was possible, so we provide the following assessments of how well the data used may represent the actual Canadian average levels. Quality is rated higher when there are data from a number of Canadian monitors, or from Canadian studies that show results similar to other comparable studies. Quality is rated lower when data from few monitors or studies were available, and lowest when estimates are based on non-Canadian data. Others may rate data quality differently.

Exposure Pathway	Data Quality	Notes
Outdoor air	Low	 Indeno(1,2,3-cd)pyrene is regularly measured in outdoor air at 17 monitoring stations across Canada using accepted protocols.
Indoor air	Very Low	 One recent US study identified (New York City). Agrees reasonably well with a smaller US study in Chicago. A small Canadian study near an aluminum smelter reported a lower mean for 10 homes without oil heating, but a similar mean for 3 homes with oil heating.
Indoor dust	Low	 Measured levels from one recent Canadian study (Ottawa, ON) are considerably higher than 2 recent studies conducted in California, USA using the same analytical methods.
Drinking water	Gap	 Only 1 sample was analyzed for indeno(1,2,3-cd)pyrene in Ontario in 2009. No recent data or studies were identified.
Foods and beverages	Gap	 No Canadian or US data on concentrations of indeno(1,2,3-cd)pyrene in foods or beverages were identified.

3. Data for mapping concentrations

The maps use geographic coordinates at the census block level to represent residential locations. Concentration estimates are mapped at the health region level, which are created with aggregated census block data.

We used a model to predict annual average concentrations of indeno(1,2,3-cd)pyrene in outdoor air at residential locations for 2011. These are predicted using levels measured from the National Air Pollution Surveillance (NAPS) monitors and estimated concentrations from known emitters. For more information on how these estimates were created, please see the Mapping Methods document on the Environmental Approach section of our website.

Estimates by health region

The table below shows predicted indeno(1,2,3-cd)pyrene concentrations by province based on data at the health region level. The median concentration of indeno(1,2,3-cd)pyrene measured in outdoor air in 2011 at the health region level was 0.00023 μ g/m³, while the mean concentration was 0.00026 μ g/m³. Concentrations of indeno(1,2,3-cd)pyrenecan be higher or lower than average in many locations.

i. Provincial averages of predicted indeno(1,2,3-cd)pyrene concentrations (μg/m³) in outdoor air in 2011 based on health regions

Province	Median	Mean
ВС	0.00029	0.00029
AB	0.00017	0.00017
SK	0.00015	0.00016
MB	0.00015	0.00015
ON	0.00025	0.00031
QC	0.00025	0.00032
NB	0.00023	0.00022
PE	0.00022	0.00022
NS	0.00027	0.00027
NL	0.00014	0.00015
ΥК	0.00021	0.00021
NT	0.00015	0.00015
NU	0.00025	0.00025
Canada	0.00023	0.00026

Estimates by census block

The table below shows provincial populations by concentration levels (either annual average or number of times above/below the national average) based on the census block data and the associated potential lifetime excess risk given different cancer potency factors.

i. Provincial population distribution by estimated average concentration ($\mu g/m^3$) of indeno(1,2,3-cd)pyrenein outdoor air in 2011 based on NAPS data at the census block

Estimated annual average concentration (µg/m ³)	Less than 0.000033	0.000033 to 0.00004	0.00004 to 0.00005	0.00005 to 0.000067	0.000067 to 0.0001	0.0001 to 0.00015	0.00015 to 0.0002	0.0002 to 0.00025	0.00025 to 0.0003	More than 0.0003
Compared to national average	>3x lower	2.5 to 3x lower	2 to 2.5x lower	1.5 to 2x lower Below A	1 to 1.5x lower	1 to 1.5x higher	1.5 to 2x higher	2 to 2.5x higher	2.5 to 3x higher	>3.0x higher
(0.0001µg/m³)*	~									\longrightarrow
BC					458,638 (10.4%)	23,444 (0.5%)	2,342,114 (53.2%)	294,565 (6.7%)	256,773 (5.8%)	1,024,523 (23.3%)
AB					2,307,115 (63.3%)	294,046 (8.1%)	713,020 (19.6%)	161,045 (4.4%)	63,509 (1.7%)	106,522 (2.9%)
SK					343,070 (33.2%)	13,368 (1.3%)	428,631 (41.5%)	50,249 (48.6%)	46,111 (4.5%)	151,952 (14.7%)
МВ					839,055 (69.4%)	111,325 (9.2%)	157,430 (13.0%)	51,776 (4.3%)	19,565 (1.6%)	29,117 (2%)
ON	530,702 (4.1%)	116,580 (0.9%)	210,831 (1.6%)	70,415 (0.5%)	1,008,256 (7.8%)	3,368,353 (26.2%)	3,222,317 (25.1%)	845,401 (6.6%)	783,511 (6.1%)	2,695,455 (21.0%)
QC					1,050,012 (13.3%)	60,344 (0.8%)	1,461,606 (18.5%)	1,816,064 (23.0%)	1,123,101 (14.2%)	2,391,874 (30.3%)
NB	80,539 (10.7%)	11,310 (1.5%)	18,774 (2.5%)	13,346 (1.8%)	249,478 (33.2%)	13,492 (1.8%)	253,912 (33.8%)	21,983 (2.9%)	19,018 (2.5%)	69,319 (9.2%)
NS					274,048 (29.7%)	13,131 (1.4%)	438,968 (47.6%)	32,098 (3.5%)	36,117 (3.9%)	127,365 (13.8%)
PE					49,871 (3.6%)	2,464 (1.8%)	63,297 (45.1%)	4,809 (3.4%)	3,766 (2.7%)	15,997 (11.4%)
NL					202,329 (39.3%)	38,271 (7.4%)	168,695 (32.8%)	23,184 (4.5%)	29,580 (5.7%)	52,477 (10.2%)
NU					31,906 (100.0%)					
NT					20,294 (48.9%)	576 (1.4%)	15,455 (37.3%)	2,570 (6.2%)	585 (1.4%)	1,982 (4.8%)
YT					6,991 (20.6%)	180 (0.5%)	17,463 (51.5%)	1,818 (5.4%)	1,577 (4.7%)	5,868 (17.3%)
CANADA	611,241	127,890	299,605	83,761	6,841,063	3,938,994	9,282,908	3,305,562	2,383,213	6,672,451
% of pop.	(1.8%)	(0.4%)	(0.7%)	(0.3%)	(20.4%)	(11.8%)	(27.7%)	(9.9%)	(7.1%)	(19.9%)

ASSOCIATED LIFETIME EXCESS CANCER RISK (per million people):

RED = POTENTIAL LIFETIME EXCESS RISK IS GREATER THAN 1 PER MILLION PEOPLE

Health Canada CPF: No CPF										
California OEHHA CPF: 0.39	< 0.0003	0.0003 to < 0.0004	0.0004 to < 0.0005	0.0005 to < 0.0006	0.0006 to < 0.0009	0.0009 to < 0.0014	0.0014 to < 0.0018	0.0018 to < 0.0023	0.0023 to < 0.0027	> 0.0027
US EPA CPF: No CPF										

* measured at National Air Pollution Surveillance (NAPS) monitors in 2011 CPF: Cancer Potency Factor