

Environmental estimates (circa 2011): Supplemental data

Table of Contents

1.	Dat	ta for lifetime excess cancer risk estimates	
c		iew	
	i.	Environmental Concentrations	
	ii.	Calculated Lifetime Daily Intake	
	iii.	Cancer Potency Factors	
	iv.	Lifetime Excess Cancer Risk (per million people)	
S	uppo	rting data by exposure pathway	
	i.	Outdoor air	
	ii.	Indoor air	3
	iii.	Dust	7
	iv.	Drinking water	7
	٧.	Food and Beverages	
2.	Dat	ta quality for lifetime excess cancer risk estimates	11
3.	Dat	ta for mapping concentrations	12
Е		ates by health region	
Е	stima	ates by census block	12

1. Data for lifetime excess cancer risk estimates

Overview

The summary data used to calculate lifetime excess cancer risk and the results for chloroform are provided in the tables below. For more detailed information on supporting data and sources, see below for each exposure pathway.

i. Environmental Concentrations

Exposure pathway	Units	Average	Maximum	Notes	
Outdonnin		0.15	2.2		
Outdoor air	μg/m³	0.15	2.3		
Indoor air	μg/m³	2.53	33		
Drinking water	μg/L	31.9	151		
Foods and beverages		See detailed data	Not estimated		

ii. Calculated Lifetime Daily Intake

Exposure pathway	Average intake (mg/kg bodyweight per day)	Maximum intake (mg/kg bodyweight per day)
Outdoor air	0.0000035	0.000053
Indoor air	0.00082	0.011
Drinking water	0.00083	0.0039
Foods and beverages	0.0000047	Not estimated

iii. Cancer Potency Factors

Exposure route	Health Canada	US EPA	CA OEHHA
Inhalation		0.0805	0.019
Ingestion			0.031

Sources for Cancer Potency Factors:

- Health Canada, 2010. Federal Contaminated Site Risk Assessment in Canada, Part I: Guidance on Human Health Preliminary Quantitative Risk Assessment. Version 2.0.
- Health Canada, 2010. Federal Contaminated Site Risk Assessment in Canada, Part II: Health Canada Toxicological Reference Values (TRVs) and Chemical-Specific Factors. Version 2.0.
- United States Environmental Protection Agency Integrated Risk Information System
- California Office of Environmental Health Hazard Assessment, 2009. Air Toxics Hot Spots Risk Assessment Guidelines Part II: Technical Support Document for Cancer Potency Factors, Appendix A. (Updated 2011)

iv. Lifetime Excess Cancer Risk (per million people)

		Average ¹		Maximum ²
Exposure pathway	Health Canada	US EPA	CA OEHHA³	
Outdoor air		0.27941	0.066	1.01
Indoor air	-	66.165	15.6	863.02
Drinking water			25.6	121.55
Foods and beverages			0.146	Not estimated

¹Lifetime excess cancer risk based on average intake x cancer potency factor from each agency

Supporting data by exposure pathway

i. Outdoor air

Outdoor air concentrations are from the National Air Pollution Surveillance monitoring network operated by Environment Canada, for the year 2010.

Source	Stations (n)	Min	Max	Mean	DF
NAPS 2010 (μg/m³)	53	0.012	1.2	0.073	1.0

DF = Detection frequency

We assume chloroform is present at these levels in all outdoor air, although concentrations may vary from one location to another.

ii. Indoor air

Indoor air concentrations are based on data published in peer-reviewed literature since 2000. A ranking system was used to select data most representative of Canadian conditions circa 2011:

- 1. Canadian data collected in 2000 or more recently, sample duration of 24 hours or longer;
- 2. US studies of similar currency and sample duration;
- 3. Studies from northern European countries of similar currency and sample duration;
- Canadian, US or European studies with data collected prior to 2000 and similar sample duration;
 and
- Studies with sample duration of less than 24 hours regardless of country or collection date, or studies from countries not comparable to Canada.

²Lifetime excess cancer risk based on maximum intake x highest cancer potency factor

³California Office of Environmental Health Hazard Assessment

Rank: 1	Author	: Heal	th Canada (20	012)			Location:	Halifax, NS			
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
331	1.0 0.997	0.022	2009 summer winter	μg/m³	24hr	0.116 <dl< td=""><td>17.18 26.42</td><td>2.453 1.986</td><td>1.384</td><td>1.452</td><td>25th 0.812 75th 2.956 90th 6.020 95th 9.716 25th 0.805 75th 2.289 90th 4.283 95th 6.030</td></dl<>	17.18 26.42	2.453 1.986	1.384	1.452	25th 0.812 75th 2.956 90th 6.020 95th 9.716 25th 0.805 75th 2.289 90th 4.283 95th 6.030

^{*}DF = Detection frequency
**DL = Detection limit

Rank: 1	Autho	r: Heal	th Canada (20	010)			Location:	Regina, SK			
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
105	1.0	0.030	2007 Summer	μg/m³	24hr	0.127	34.930	3.240	1.565	1.748	25 th 0.975 75 th 3.865 90 th 7.530 95 th 11.640
101	1.0				5 day	0.323	20.484	3.644	2.285	2.314	25th 1.230 75th 8.880 90th 0.445 95th 11.480
105	1.0		winter		24hr	0.307	7.087	2.166	1.900	1.781	25 th 1.140 75 th 2.650 90 th 4.143 95 th 4.897
89	1.0				5 day	0.247	7.027	2.388	2.097	1.920	25 th 0.100 75 th 0.393 90 th 1.317 95 th 2.143

^{*}DF = Detection frequency **DL = Detection limit

Rank: 1	Autho	r: Heal	th Canada (20	010)			Location:	Windsor, ON			
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
217	1.0	0.089	2005 summer winter	μg/m³	24hr	0.100	59.885 47.930	4.023 1.678	2.675 1.097	2.552	25th 1.545 75th 4.995 90th 7.350 95th 11.230 25th 0.660 75th 1.870 90th 2.945 95th 3.945
211	1.0	0.082	2006 summer		24hr	0.223	18.947	3.104	2.117	2.105	25 th 1.207 75 th 3.670 90 th 6.570
224	1.0		winter			0.140	8.587	1.127	0.815	0.802	95th 8.747 25th 0.462 75th 1.310 90th 2.320 95th 3.267

^{*}DF = Detection frequency

^{**}DL = Detection limit

Rank: 2	Author:	Batte	rman (2007)				Location:	Ann Arbor a	and Ypsilan	ti, Michigan	
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
15	0.8	0.045		μg/m³	4 days		0.9	0.3			

Notes: homes with attached garages, not detected outdoors or in garages

^{**}DL = Detection limit

Rank: 2	Author:	Jia (200	08)				Location:	Michigan			
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
40	0.88		2004-	μg/m³	3-4 days,		2.51	0.06	0.06		
30			2005		weekday			0.04	0.04		
40								0.05	0.04		
42								0.06	0.06		
29								0.06	0.06		
45								0.14	0.07		
226								0.07	0.06		

Notes: Values listed in the following order: Ann Arbour (suburban) SUMMER, Ypsilanti (urban/commercial) SUMMER, Dearborn (industrial) SUMMER, Ann Arbour (suburban) WINTER, Ypsilanti (urban/commercial) WINTER, Dearborn (industrial) FALL, Three cities above overall stats

^{*}DF = Detection frequency

^{*}DF = Detection frequency
**DL = Detection limit

Rank: 2	Author:	Johnso	on (2010)				Location:	Detroit, MI			
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
41	0.93	0.2	2006	μg/m³	7-day	0.1	2.9	0.8			25th 0.5 50th 0.6 75th 0.9 95th 1.9

^{*}DF = Detection frequency

^{**}DL = Detection limit

Rank: 2	Author:	Weise	I (2008)				Location:	New Jersey			
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
100	0.29	2.4 or 0.98	2003 - 2006	μg/m³	24h	0.98	5.9	2.05			25th 0.98 50th 2.4 75th 2.4 90th 2.62 95th 4.05

^{*}DF = Detection frequency

^{**}DL = Detection limit

Rank: 3	Author	: Ohura	(2006)				Location:	Shimuzu, Ja			
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
25	1.0	0.14 pg	2000- 2001	μg/m³	24h					0.25	10th 0.12 90th 0.55
21										0.92	10th 0.41 90th 1.94

Notes: Values listed in following order: Summer, Winter

^{**}DL = Detection limit

	Author:	Sax (2	(006)				Location:	New York City, Los Angeles			
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
46	1.0	<1	1999-	μg/m³	48h		8.17	2.96	2.4		
41	0.93		2000		weekday		4.19	0.63	0.45		

Notes: Values listed in following order: NYC-non-smoking homes, LA-non-smoking homes

Sources for indoor air data:

- Batterman S, Jia CR, Hatzivasilis G. 2007. Migration of volatile organic compounds from attached garages to residences: A major exposure source. Environmental Research 104: 224-240.
- Health Canada. 2012. Halifax Indoor Air Quality Study (2009) Volitile Organic Compounds (VOC) Data Summary. Available online at http://www.healthcanada.gc.ca.
- Health Canada. 2010. Regina Indoor Air Quality Study (2007): Data Summary for Volatile Organic Compound Sampling. Available online at http://www.healthcanada.gc.ca.

^{*}DF = Detection frequency

^{*}DF = Detection frequency

^{**}DL = Detection limit

- Health Canada. 2010. Windsor Exposure Assessment Study (2005-2006): Data Summary for Volatile Organic Compound Sampling. Available online at: http://www.healthcanada.gc.
- Jia C, Batterman S, Godwin C. 2008. VOCs in industrial, urban and suburban neighborhoods, Part 1: Indoor and outdoor concentrations, variation, and risk drivers. Atmospheric Environment 42: 2083-2100.
- Johnson MM, Williams R, Fan Z, Lin L, Hudgens E, Gallagher J, et al. 2010. Participant-based monitoring of indoor and outdoor nitrogen dioxide, volatile organic compounds, and polycyclic aromatic hydrocarbons among MICA-Air households. Atmospheric Environment In Press: 1-10.
- Ohura T, Amagai T, Senga Y, Fusaya M. 2006. Organic air pollutants inside and outside residences in Shimizu, Japan: Levels, sources and risks. Science of the Total Environment 366: 485-499.
- Sax SN, Bennett DH, Chillrud SN, Ross J, Kinney PL, Spengler JD. 2006. A cancer risk assessment
 of inner-city teenagers living in New York City and Los Angeles. Environmental Health
 Perspectives 114: 1558-1566.
- Weisel CP, Alimokhtari S, Sanders PF. 2008. Indoor Air VOC Concentrations in Suburban and Rural New Jersey. Environmental Science & Technology 42: 8231-8238.

iii. Dust

Chloroform is not expected to be present in indoor dust in significant amounts.

iv. Drinking water

Drinking water data are from the Ontario Drinking Water Surveillance Program (DWSP) for 2011. A review of published reports was also conducted in order to compare how well the Ontario data represented other regions in Canada.

ource	Units	DL						
Ontario DWSP 2011	(µg/L)	0.1						
mple Type	Parameter	Mean	SD	Min	25 th	50 th	75 th	Max
Distribution		31.9	27.1	0.5	7.13	26.0	51.2	151.0

DL = Detection limit SD = Standard Deviation

v. Food and Beverages

Food consumption data are from the Statistics Canada Food Survey (2006) - Food available, adjusted for losses tables, and from the Nutrition Canada Survey (1970-1972).

Food concentration data are primarily from the US-FDA Total Diet Study (2003-2004), with additional data on metals and several PAHs from the Canadian Food Inspection Agency (CFIA) - National Chemical Residue Monitoring Program: 2009-2010 Annual Report and the US-FDA (TDS Statistics on Element Results - 2008).

In order to better represent actual intake, we incorporated data for cooked and/or processed foods, as in some cases, this can either add to or diminish the amount measured in raw food.

Concentration data were obtained for 70% of total meat consumed, 46% of total seafood consumed, 35% of total fruit consumed, 27% of total vegetables consumed, 59% of total dairy and eggs consumed, 1% of total grains consumed, and 52% of total beverages consumed.

Food or Beverage	Concentration (μg/g)	DF	Food or Beverage	Concentration (µg/g)	DF
Beef	0.00323	0.20455	Peaches fresh		
Chicken			Pears canned		
Mutton and lamb	0.00170	0.02273	Pears fresh	0.01000	0.02273
Offal		0.02273	Pineapples canned		
Oils and fats	0.02025	0.75000	Pineapples fresh		
Pork		0.02273	Plums total fresh		
Salad oils			Quinces fresh		
Shortening and shortening oils	5		Raspberries frozen		
Stewing hen			Strawberries canned		
Turkey	0.02000	0.02273	Strawberries fresh	0.00012	0.04651
Veal	0.02000	0.02273	Strawberries frozen	0.00012	0.04031
Fish fresh and frozen seafish			Sugar maple		
Fish freshwater			Sugar refined		
Fish processed seafish	0.00350	0.50000	Honey		
Apple pie filling	0.00250	0.50000	Artichokes fresh		
Apple sauce	0.01100	0.00070	Asparagus canned		
Apples canned	0.01100	0.02273	Asparagus fresh		
			Asparagus fresh		
Apples dried			Beans baked and canned	0.00364	0.31818
Apples fresh	0.00027	0.09091			
Apples frozen			Beans dry		
Apricots canned			Beans green and wax canned		
Apricots fresh			Beans green and wax fresh	0.01100	0.02273
Bananas fresh	0.00091	0.09091	Beans green and wax frozen		
Berries other fresh			Beets canned		
Blueberries canned			Beets fresh		
Blueberries fresh			Broccoli fresh	0.01400	0.02273
Blueberries frozen			Broccoli frozen		
Cherries fresh	0.01100	0.02941	Brussels sprouts fresh		
Cherries frozen			Brussels sprouts frozen		
Citrus other fresh			Cabbage Chinese fresh		
Coconut fresh			Cabbage fresh		
Cranberries fresh			Carrots canned		
Dates fresh			Carrots fresh		
Figs fresh			Carrots frozen		
Fruit dried	0.00255	0.29546	Cauliflower fresh	0.01500	0.02273
Grapefruit fresh			Cauliflower frozen		
Grapes fresh			Celery fresh		
Guava and mangoes fresh			Corn canned		
Kiwi fresh			Corn flour and meal		
Lemons fresh			Corn fresh	0.0290	0.02273
Limes fresh			Corn frozen		
Mandarins fresh			Cucumbers fresh		
Melons musk, cantaloupe fres	h		Eggplant fresh		
Melons other fresh			Garlic fresh		
Melons watermelons fresh			Kohlrabi fresh		
Melons, winter melons fresh			Leeks fresh		
Nectarines fresh			Lettuce fresh		
Oranges fresh	0.00055	0.15909	Lima beans frozen		
Papayas fresh			Manioc fresh		
Peaches canned			Mushrooms canned		

Food or Beverage	Concentration (μg/g)	DF	Food or Beverage	Concentration (μg/g)	DF
Mushrooms fresh			Milk buttermilk		
Okra fresh	0.01100	0.02273	Milk chocolate drink		
Olives fresh	0.01100	0.02273	Milk concentrated skim		
Onions and shallots fresh			Milk concentrated whole		
Parsley fresh			Milk other whole milk produc	ts	
Parsnips fresh			Milk partly skimmed 2%		
Peas canned			Milk skim		
Peas dry			Milk standard	0.00389	0.43182
Peas fresh	0.01100	0.02273	Milk sweetened concentrated	skim	
Peas frozen			Milkshake		
Peppers fresh			Powder buttermilk		
Potatoes chips	0.00220	0.22727	Powder skim milk		
Potatoes frozen			Powder whey		
Potatoes other processed			Sherbet		
Potatoes sweet fresh	0.02700	0.02500	Yogurt		
Potatoes white fresh	0.01200	0.02273	Cereal products		
Potatoes white fresh and pro	cessed		Oatmeal and rolled oats		
Pumpkins and squash fresh	0.03000	0.02273	Peanuts	0.00298	0.18182
Radishes fresh			Pot and pearl barley		
Rappini fresh			Pulses and nuts		
Rutabagas and turnip fresh			Rice		
Spinach fresh	0.00084	0.04546	Rye flour		
Spinach frozen			Tree nuts		
Tomatoes canned			Wheat flour		
Tomatoes fresh	0.00132	0.15909	Ale, beer, stout and porter		
Tomatoes pulp, paste and pu	iree		Beverages alcoholic		
Vegetables other edible root	fresh		Coffee		
Vegetables other leguminous	fresh		Distilled spirits		
Vegetables unspecified canno	ed		Juice apple	0.01200	0.02273
Vegetables unspecified fresh			Juice grape		
Vegetables unspecified froze	n		Juice tomato		
Butter	0.03645	0.70455	Juice fruit	0.00275	0.50000
Cheese cheddar	0.02582	0.61364	Juice grapefruit		
Cheese cottage			Juice lemon		
Cheese processed	0.01720	0.61364	Juice orange	0.00100	0.22727
Cheese variety	0.02298	0.50000	Juice pineapple		
Cream cereal 10%	0.01200	0.02273	Juice vegetable		
Cream sour	0.02873	0.65909	Soft drinks	0.00595	0.40909
Cream table 18%			Tea	0.01500	0.02273
Cream whipping 32% or 35%			Water bottled	0.00500	0.25000
Eggs	0.02300	0.02273	Wines		
Ice cream	0.01884	0.63636	Cocoa		
Ice milk					
Margarine	0.00239	0.31818			

2. Data quality for lifetime excess cancer risk estimates

Only publicly available data were used to calculate these indicators. Data that are not publicly available may produce different results.

No systematic method for measuring data quality was possible, so we provide the following assessments of how well the data used may represent the actual Canadian average levels. Quality is rated higher when there are data from a number of Canadian monitors, or from Canadian studies that show results similar to other comparable studies. Quality is rated lower when data from few monitors or studies were available, and lowest when estimates are based on non-Canadian data. Others may rate data quality differently.

Exposure Pathway	Data Quality	Notes
Outdoor air	High	 Chloroform is regularly measured in outdoor air at 53 monitoring stations across Canada using accepted protocols.
Indoor air	Moderate	 Good agreement in mean concentrations measured in three recent Canadian studies (Halifax NS, Regina SK, Windsor ON).
Drinking water	Moderate	 All samples (n=342) from the Ontario Drinking Water Surveillance Program contained chloroform in 2011, and there is reasonable agreement with a national survey of drinking water distribution systems (1994-2000) and a smaller study conducted in ON and NS.
Foods and beverages	Very Low	 No Canadian data on concentrations of chloroform in foods and beverages were identified. Data from the US-FDA (TDS-2003-2004) were used for this estimate.

3. Data for mapping concentrations

The maps use geographic coordinates at the census block level to represent residential locations. Concentration estimates are mapped at the health region level, which are created with aggregated census block data.

We used a model to predict annual average concentrations of chloroform in outdoor air at residential locations for 2011. These are predicted using levels measured from the National Air Pollution Surveillance (NAPS) monitors and estimated concentrations from known emitters. For more information on how these estimates were created, please see the Mapping Methods document on the Environmental Approach section of our website.

Estimates by health region

The table below shows predicted chloroform concentrations by province based on data at the health region level. The median concentration of chloroform measured in outdoor air in 2011 at the health region level was $0.085~\mu g/m^3$, while the mean concentration was $0.091~\mu g/m^3$. Concentrations of chloroform can be higher or lower than average in many locations.

i. Provincial averages of predicted chloroform concentrations ($\mu g/m^3$) in outdoor air in 2011 based on health regions

Province	Median	Mean
ВС	0.091	0.098
AB	0.081	0.082
SK	0.072	0.075
MB	0.083	0.084
ON	0.085	0.090
QC	0.088	0.096
NB	0.090	0.122
PE	0.086	0.086
NS	0.089	0.104
NL	0.077	0.079
YK	0.086	0.086
NT	0.078	0.078
NU	0.070	0.070
Canada	0.085	0.091

Estimates by census block

The table below shows provincial populations by concentration levels (either annual average or number of times above/below the national average) based on the census block data and the associated potential lifetime excess risk given different cancer potency factors.

Provincial population distribution by estimated average concentration (μg/m3) of chloroform in outdoor air in 2011 based on NAPS data at the census block

Estimated annual average concentration (µg/m³)	Less than 0.05	0.05 to 0.06	0.06 to 0.08	0.08 to 0.010	0.10 to 0.15	0.15 to 0.23	0.23 to 0.3	0.3 to 0.38	0.38 to 0.45	More than 0.45
Compared to national average	>3x lower	2.5 to 3x lower	2 to 2.5x lower	1.5 to 2x lower	1 to 1.5x lower	1 to 1.5x higher	1.5 to 2x higher	2 to 2.5x higher	2.5 to 3x higher	>3.0x higher
(0.15μg/m³)*				Below	Average	Above Av	erage			\longrightarrow
ВС			660,244 (15.0%)	561,513 (12.8%)	2,262,643 (51.4%)	810,065 (18.4%)				105,592 (23.4%)
AB				3,104,584 (85.2%)	42,069 (1.2%)	498,604 (13.7%)				
SK		4,425 ()0.4%)		610,544 (59.0%)		418,412 (40.5%)				
МВ				1,113,078 (92.1%)		95,190 (7.9%)				
ON			673,251 (5.2%)	5,310,762 (41.3%)	2,459,460 (19.1%)	4,327,767 (33.7%)	79,139 (.06%)			1,442 (<0.1%)
QC			680,388 (8.6%)	1,431,666 (18.1%)	2,188,799 (27.7%)	3,596,060 (45.6%)				6,088 (<0.1%)
NB				288,659 (38.4%)	131,533 (17.5%)	310,140 (41.3%)				20,839 (2.8%)
NS				288,734 (31.3%)		569,951 (61.8%)		63,042 (6.8%)		
PE				55,830 (39.8%)		80,975 (57.8%)		3,399 (2.4%)		
NL				237,900 (46.2%)	235,709 (45.8%)	40,927 (8.0%)				
NU				31,906 (100.0%)						
NT				22,228 (53.6%)		19,234 (46.4%)				
YT				7,869 (23.2%)		26,028 (76.8%)				
CANADA		4,425	2,013,883	13,065,273	7,320,213	10,793,353	79,139	66,441		133,961
% of pop.		(<0.1%)	(6.0%)	(39.0%)	(21.9%)	(32.2%)	(0.2%)	(0.2%)		(0.4%)

ASSOCIATED LIFETIME EXCESS CANCER RISK (per million people):

RED = POTENTIAL LIFETIME EXCESS RISK IS GREATER THAN 1 PER MILLION PEOPLE

Health Canada CPF: No CPF										
California OEHHA CPF: 0.019	< 0.049	0.049 to < 0.059	0.059 to < 0.073	0.073 to < 0.098	0.098 to < 0.15	0.15 to < 0.225	0.225 to < 0.295	0.295 to < 0.37	0.37 to < 0.44	> 0.44
US EPA CPF: 0.081	< 0.09	0.09 to < 0.11	0.11 to < 0.14	0.14 to < 0.19	0.19 to < 0.28	0.28 to < 0.42	0.42 to < 0.56	0.56 to < 0.70	0.70 to < 0.84	> 0.84

^{*} measured at National Air Pollution Surveillance (NAPS) monitors in 2011

CPF: Cancer Potency Factor