

Benzo[a]pyrene Environmental estimates (circa 2011): Supplemental data

Table of Contents

1.	Dat	ta for lifetime excess cancer risk estimates	
0		iew	
	i.	Environmental Concentrations	
	ii.	Calculated Lifetime Daily Intake	
	iii.	Cancer Potency Factors	
	iv.	Lifetime Excess Cancer Risk (per million people)	
S	uppo	orting data by exposure pathway	
	i.	Outdoor air	
	ii.	Indoor air	3
	iii.	Dust	
	iv.	Drinking water	
	٧.	Food and Beverages	
2.	Dat	ta quality for lifetime excess cancer risk estimates	11
3.	Dat	ta for mapping concentrations	12
E		ates by health region	
		ates by census block	

1. Data for lifetime excess cancer risk estimates

Overview

The summary data used to calculate lifetime excess cancer risk and the results for benzo[a]pyrene are provided in the tables below. For more detailed information on supporting data and sources, see below for each exposure pathway.

i. Environmental Concentrations

Exposure pathway	Units	Average	Maximum	Notes
Outdoor air	μg/m³	0.00011	0.00056	
Indoor air	μg/m³	0.0002	0.0026	
Dust	μg/g	2.91	38.8	
Drinking water	μg/L	Insufficie	ent data	
Foods and beverages		See detailed data	Not estimated	

ii. Calculated Lifetime Daily Intake

Exposure pathway	Average intake (mg/kg bodyweight per day)	Maximum intake (mg/kg bodyweight per day)
Outdoor air	0.00000003	0.00000013
Indoor air	0.00000065	0.00000084
Dust	0.000019	0.000025
Drinking water	Insuffici	ent data
Foods and beverages	0.00000027	Not estimated

iii. Cancer Potency Factors

Exposure route	Health Canada	US EPA	CA OEHHA
Inhalation	0.13		3.9
Ingestion	2.3	7.3	12.0

Sources for Cancer Potency Factors:

- Health Canada, 2010. Federal Contaminated Site Risk Assessment in Canada, Part I: Guidance on Human Health Preliminary Quantitative Risk Assessment. Version 2.0.
- Health Canada, 2010. Federal Contaminated Site Risk Assessment in Canada, Part II: Health Canada Toxicological Reference Values (TRVs) and Chemical-Specific Factors. Version 2.0.
- United States Environmental Protection Agency Integrated Risk Information System.
- California Office of Environmental Health Hazard Assessment, 2009. Air Toxics Hot Spots Risk Assessment Guidelines Part II: Technical Support Document for Cancer Potency Factors, Appendix A. (Updated 2011)

iv. Lifetime Excess Cancer Risk (per million people)

		Average ¹		Maximum ²
Exposure pathway	Health Canada	US EPA	CA OEHHA ³	
Outdoor air	0.00033		0.0099	0.051
Indoor air	0.00845		0.25	3.29
Dust	4.396	13.95	22.93	305.8
Drinking water		Insufficient data		
Foods and beverages	0.06187	0.19637	0.32281	Not estimated

¹Lifetime excess cancer risk based on average intake x cancer potency factor from each agency

Supporting data by exposure pathway

i. Outdoor air

Outdoor air concentrations are from the National Air Pollution Surveillance monitoring network operated by Environment Canada, for the year 2010.

Source	Stations (n)	Min	Max	Mean	DF
NAPS 2010 (μg/m³)	17	0.000011	0.00056	0.00011	1.0

DF = Detection frequency

We assume benzo[a]pyrene is present at these levels in all outdoor air, although concentrations may vary from one location to another.

ii. Indoor air

Indoor air concentrations are based on data published in peer-reviewed literature since 2000. A ranking system was used to select data most representative of Canadian conditions circa 2011:

- 1. Canadian data collected in 2000 or more recently, sample duration of 24 hours or longer;
- US studies of similar currency and sample duration;
- 3. Studies from northern European countries of similar currency and sample duration;
- Canadian, US or European studies with data collected prior to 2000 and similar sample duration;
- Studies with sample duration of less than 24 hours regardless of country or collection date, or studies from countries not comparable to Canada.

²Lifetime excess cancer risk based on maximum intake x highest cancer potency factor

³California Office of Environmental Health Hazard Assessment

Rank: 1	Author:	Weich	henthal (201	3)			Location:	Manitoba,	First Nations	Reserve	
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
20			March	μg/m³	1 week			0.00018	0.00019		
20			2011					0.00022	0.00020		

^{*}DF = Detection frequency **DL = Detection limit

Rank: 2	Author:	Jung (2010)				Location:	New York (City		
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
203			2005 -	μg/m³	14 days	0.00002	0.0033	0.00019	0.00010		
98			2010				0.00449	0.00015	0.00006		

Notes: Values listed in the following order: heating season (Oct-Apr), non-heating season (May-Sept)

^{**}DL = Detection limit

Rank: 2	Author:	Li (200	5)				Location:	Chicago			
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
10	~0.95		2000 - 2001	μg/m³	48h x 14 months	0.000001	0.0013		0.00011		10th 0.000008 25th 0.00005 75th 0.00025 90th 0.0003

Notes: non-smoking homes, (sampled once a month for 14 months) total n = 115

^{*}DF = Detection frequency

^{*}DF = Detection frequency **DL = Detection limit

Rank: 3	Author	Gustaf	fson (2008)				Location:	Hagfors, Sv	veden		
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
13	100	0.00005	Feb-	μg/m³	24hr	0.00009	0.0022	0.00063	0.00052		
10	100		March 2003			0.00009	0.00048	0.00016	0.00012		

Notes: Values listed in the following order: wood burning, non-wood burning homes.

^{**}DL = Detection limit

	Author	: Halsall	(2008)				Location:	Lancaster UK			
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
7	0.14	0.00001 to 0.0015	Summer 2003	μg/m³	6 to 24 hours	<dl< td=""><td>0.00057</td><td>0.00012</td><td>0.000025</td><td></td><td></td></dl<>	0.00057	0.00012	0.000025		

Notes: 3 locations

^{**}DL = Detection limit

Rank: 4	Author:	Naum	iova (2002)				Location:	RIOPA – Los Angeles, Houston, Elizabeth NJ			
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
19	1.0		1999-	μg/m³	48h	0.000018	0.00057			0.000078	
21	assumed	I	2000			0.0000027	0.0011			0.00002	
15						0.0000055	0.00023			0.000055	

Notes: Values listed in the following order: Los Angeles, Houston, Elizabeth NJ.

^{**}DL = Detection limit

	Author:	Sande	rson (2004)				Location:	Beauharnoi	s, PQ		
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
3	0.84	0.00001		μg/m³	24h			0.000093			
12								0.000177		0.000064	

Notes: near aluminum smelter, Values listed in the following order: homes with oil heating, with no oil heating

Sources for indoor air data:

- Gustafson P, Östman C, Sällsten G. 2008. Indoor levels of polycyclic aromatic hydrocarbons in homes with or without wood burning for heating. Environ Sci Technol 42: 5074-5080.
- Halsall CJ, Maher BA, Karloukovski VV, Shah P, Watkins SJ. 2008. A novel approach to investigating indoor/outdoor pollution links: Combined magnetic and PAH measurements. Atmospheric Environment 42: 8902-8909.
- Jung K, Patel MM, Kinney PL, Chillrud SN, Whyatt R, Hoepner L, et al. 2010. 1. Effects of Season and Indoor Heating on Indoor and Outdoor Residential Levels of Airborne Polycyclic Aromatic Hydrocarbons, Absorbance and Particulate Matter 2.5 in an Inner City Cohort of Young Children. Journal of Allergy and Clinical Immunology 125: AB81.

^{*}DF = Detection frequency

^{*}DF = Detection frequency

^{*}DF = Detection frequency

^{*}DF = Detection frequency

^{**}DL = Detection limit

- Li A, Schoonover TM, Zou QM, Norlock F, Conroy LM, Scheff PA, et al. 2005. Polycyclic aromatic hydrocarbons in residential air of ten Chicago area homes: Concentrations and influencing factors. Atmospheric Environment 39: 3491-3501.
- Naumova YY, Eisenreich SJ, Turpin BJ, Weisel CP, Morandi MT, Colome SD, et al. 2002. Polycyclic aromatic hydrocarbons in the indoor and outdoor air of three cities in the US. Environmental Science & Technology 36: 2552-2559.
- Sanderson EG, Farant JP. 2004. Indoor and outdoor polycyclic aromatic hydrocarbons in residences surrounding a Soderberg aluminum smelter in Canada. Environ Sci Technol 38: 5350-5356.
- Weichenthal S, Mallach G, Kulka R, Black A, Wheeler, A, You H, St-Jean M, Kwiatkowski, Sharp D.
 2013. A randomized double blink crossover study of indoor air infilatration and acute changes in cardiorespiratory health in a First Nations community. Indoor Air 23: 175-184.

iii. Dust

Indoor dust concentrations are based on data published in peer-reviewed literature since 2000. A ranking system was used to select data most representative of Canadian conditions circa 2011:

- 1. Canadian data collected in 2000 or more recently, sample duration of 24 hours or longer;
- 2. US studies of similar currency and sample duration;
- 3. Studies from northern European countries of similar currency and sample duration;
- Canadian, US or European studies with data collected prior to 2000 and similar sample duration; and
- Studies with sample duration of less than 24 hours regardless of country or collection date, or studies from countries not comparable to Canada.

	Author:	Maert	ens (2008)				Location:	Ottawa, Car	nada		
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
51	1.0	0.051	2002 - 2003	μg/g		0.04	38.8	2.91	0.8	1.0	

Notes: Analyzed using GC/MS

^{**}DL = Detection limit

Rank: 2	Author:	Whitel	nead (2011)				Location:	California, U	ISA		
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
583	0.984	0.002	2001- 2007	μg/g		<dl< td=""><td>1.948</td><td></td><td>0.040</td><td>1.0</td><td></td></dl<>	1.948		0.040	1.0	

Notes: Analyzed using GC/MS

^{**}DL = Detection limit

Rank: 2	Author:	Hoh (2	(012)				Location:	San Diego	County, CA	, USA	
Samples (n)	DF*	DL**	Sample Date	Units	Sample Duration	Min	Max	Mean (AM)	Med	Geomean (GM)	Percentile
43	0.907		2005- 2007	μg/g		<dl< td=""><td>0.129</td><td></td><td>0.0408</td><td></td><td>25th 0.0240 75th 0.0687</td></dl<>	0.129		0.0408		25 th 0.0240 75 th 0.0687
89	0.876					<dl< td=""><td>0.282</td><td></td><td>0.0478</td><td></td><td>25th 0.0197 75th 0.0877</td></dl<>	0.282		0.0478		25 th 0.0197 75 th 0.0877

Notes: Analyzed using GC/MS

Sources for dust data:

- Hoh E, Hunt RN, Quintana PJE, Zakarian JM, Chatfield DA, Wittry BC, Rodriguez E, Matt GE. 2012. Environmental tobacco smoke as a source of polycyclic aromatic hydrocarbons in settled house dust. Environ Sci Technol 46: 4174-4183.
- Maertens RM, Yang XF, Zhu JP, Gagne RW, Douglas GR, White PA. 2008. Mutagenic and carcinogenic hazards of settled house dust I: Polycyclic aromatic hydrocarbon content and excess lifetime cancer risk from preschool exposure. Environmental Science & Technology 42: 1747-1753.
- Whitehead T, Metayer C, Gunier RB, Ward MH, Nishioka MG, Buffler P, Rappaport SM. 2011.
 Determinants of polycyclic aromatic hydrocarbon levels in house dust. J Expo Sci Environ Epidemiol 21(2): 123-132.

iv. Drinking water

No recent data or studies were identified.

^{*}DF = Detection frequency

^{*}DF = Detection frequency

^{*}DF = Detection frequency **DL = Detection limit

v. Food and Beverages

Food consumption data are from the Statistics Canada Food Survey (2006) - Food available, adjusted for losses tables, and from the Nutrition Canada Survey (1970-1972).

Food concentration data are primarily from the US-FDA Total Diet Study (2003-2004), with additional data on metals and several PAHs from the Canadian Food Inspection Agency (CFIA) - National Chemical Residue Monitoring Program: 2009-2010 Annual Report and the US-FDA (TDS Statistics on Element Results - 2008).

In order to better represent actual intake, we incorporated data for cooked and/or processed foods, as in some cases, this can either add to or diminish the amount measured in raw food.

Concentration data were obtained for 26% of total meat consumed.

Food or Beverage	Concentration (µg/g)	DF	Food or Beverage	Concentration (μg/g)	DF
Beef	0.00036	0.07700	Peaches fresh		
Chicken	0.00104	0.07700	Pears canned		
Mutton and lamb	0.00042	0.14300	Pears fresh		
Offal			Pineapples canned		
Oils and fats			Pineapples fresh		
Pork			Plums total fresh		
Salad oils			Quinces fresh		
Shortening and shortening	oils		Raspberries frozen		
Stewing hen			Strawberries canned		
Turkey			Strawberries fresh		
Veal			Strawberries frozen		
Fish fresh and frozen seafi	sh		Sugar maple		
Fish freshwater			Sugar refined		
Fish processed seafish			Honey		
Apple pie filling			Artichokes fresh		
Apple sauce			Asparagus canned		
Apples canned			Asparagus fresh		
Apples dried			Avocados fresh		
Apples fresh			Beans baked and canned		
Apples frozen			Beans dry		
Apricots canned			Beans green and wax cann	ed	
Apricots fresh			Beans green and wax fresh		
Bananas fresh			Beans green and wax froze		
Berries other fresh			Beets canned	:11	
Blueberries canned			Beets fresh		
Blueberries fresh			Broccoli fresh		
Blueberriesfrozen			Broccoli frozen		
Cherries fresh			Brussels sprouts fresh		
Cherries frozen			Brussels sprouts frozen		
Citrus other fresh			Cabbage Chinese fresh		
Coconut fresh			Cabbage fresh		
Cranberries fresh			Carrots canned		
Dates fresh Figs fresh			Carrots fresh Carrots frozen		
Fruit dried					
			Cauliflower fresh Cauliflower frozen		
Grapefruit fresh					
Grapes fresh			Celery fresh		
Guava and mangoes fresh Kiwi fresh			Corn canned Corn flour and meal		
Lemons fresh			Corn fresh		
Limes fresh			Corn frozen Cucumbers fresh		
Mandarins fresh	for all				
Melons musk, cantaloupe	rresn		Eggplant fresh		
Melons other fresh			Garlic fresh		
Melons watermelons fresh			Kohlrabi fresh		
Melons, winter melons fre	:SN		Leeks fresh		
Nectarines fresh			Lettuce fresh		
Oranges fresh			Lima beans frozen		
Papayas fresh			Manioc fresh		
Peaches canned			Mushrooms canned		

Benzo[a]pyrene 9

Food or Beverage Concentration DF Food or Beverage Concentration (μg/g) $(\mu g/g)$ Mushrooms fresh Milk buttermilk Okra fresh Milk chocolate drink Olives fresh Milk concentrated skim Onions and shallots fresh Milk concentrated whole Parsley fresh Milk other whole milk products Parsnips fresh Milk partly skimmed 2% Peas canned Milk skim Peas dry Milk standard Peas fresh Milk sweetened concentrated skim Milkshake Peas frozen Peppers fresh Powder buttermilk Powder skim milk Potatoes chips Potatoes frozen Powder whey Potatoes other processed Sherbet Potatoes sweet fresh Yogurt Potatoes white fresh Cereal products Potatoes white fresh and processed Oatmeal and rolled oats Pumpkins and squash fresh Peanuts Radishes fresh Pot and pearl barley Rappini fresh Pulses and nuts Rutabagas and turnip fresh Rice Spinach fresh Rye flour Spinach frozen Tree nuts Tomatoes canned Wheat flour Tomatoes fresh Ale, beer, stout and porter Tomatoes pulp, paste and puree Beverages alcoholic Coffee Vegetables other edible root fresh Distilled spirits Vegetables other leguminous fresh Vegetables unspecified canned Juice apple Vegetables unspecified fresh Juice grape Vegetables unspecified frozen Juice tomato Butter Juice fruit Cheese cheddar Juice grapefruit Cheese cottage Juice lemon Cheese processed Juice orange Cheese variety Juice pineapple Cream cereal 10% Juice vegetable Cream sour Soft drinks Cream table 18% Tea Water bottled Cream whipping 32% or 35% Eggs Wines Ice cream Cocoa Ice milk

Benzo[a]pyrene 10

Margarine

2. Data quality for lifetime excess cancer risk estimates

Only publicly available data were used to calculate these indicators. Data that are not publicly available may produce different results.

No systematic method for measuring data quality was possible, so we provide the following assessments of how well the data used may represent the actual Canadian average levels. Quality is rated higher when there are data from a number of Canadian monitors, or from Canadian studies that show results similar to other comparable studies. Quality is rated lower when data from few monitors or studies were available, and lowest when estimates are based on non-Canadian data. Others may rate data quality differently.

Exposure Pathway	Data Quality	Notes
Outdoor air	Low	 Benzo[a]pyrene is regularly measured in outdoor air at 17 monitoring stations across Canada using accepted protocols.
Indoor air	Low	 One recent Canadian study identified on a First Nations Reserve in Manitoba. Agrees well with a recent study conducted in New York City, USA, as well as a smaller study in Chicago.
Indoor dust	Low	 Measured levels from one recent Canadian study (Ottawa, ON) are considerably higher than 2 recent studies conducted in California, USA using the same analytical methods.
Drinking water	Gap	 Only 1 distribution sample was analyzed for benzo[a]pyrene in Ontario in 2009. No recent data or studies identified.
Foods and beverages	Very Low	 Very limited data from CFIA (National Chemical Residue Monitoring Program: 2009-2010 Annual Report) for benzo[a]pyrene in foods and beverages were identified.

3. Data for mapping concentrations

The maps use geographic coordinates at the census block level to represent residential locations. Concentration estimates are mapped at the health region level, which are created with aggregated census block data.

We used a model to predict annual average concentrations of benzo[a]pyrene in outdoor air at residential locations for 2011. These are predicted using levels measured from the National Air Pollution Surveillance (NAPS) monitors and estimated concentrations from known emitters. For more information on how these estimates were created, please see the Mapping Methods document on the Environmental Approach section of our website.

Estimates by health region

The table below shows predicted benzo[a]pyrene concentrations by province based on data at the health region level. The median concentration of benzo[a]pyrene measured in outdoor air in 2011 at the health region level was $0.00015~\mu g/m^3$, while the mean concentration was $0.00018~\mu g/m^3$. Concentrations of benzo[a]pyrene can be higher or lower than average in many locations.

i. Provincial averages of predicted benzo[a]pyrene concentrations ($\mu g/m^3$) in outdoor air in 2011 based on health regions

Province	Median	Mean
ВС	0.00020	0.00020
АВ	0.00010	0.00011
SK	0.00009	0.00010
МВ	0.00009	0.00009
ON	0.00019	0.00023
QC	0.00017	0.00021
NB	0.00015	0.00015
PE	0.00014	0.00014
NS	0.00019	0.00020
NL	0.00008	0.00009
YK	0.00014	0.00014
NT	0.00009	0.00009
NU	0.00014	0.00014
Canada	0.00015	0.00018

Estimates by census block

The table below shows provincial populations by concentration levels (either annual average or number of times above/below the national average) based on the census block data and the associated potential lifetime excess risk given different cancer potency factors.

i. Provincial population distribution by estimated average concentration (µg/m³) of benzo[a]pyrene in outdoor air in 2011 based on NAPS data at the census block

Estimated annual average concentration (µg/m³)	Less than 0.000037	0.000037 to 0.000044	0.000044 to 0.000055	0.000055 to 0.000073	0.000073 to 0.00011	0.00011 to 0.00017	0.00017 to 0.00022	0.00022 to 0.00028	0.00028 to 0.00033	More than 0.00033
Compared to national average	>3x lower	2.5 to 3x lower	2 to 2.5x lower	1.5 to 2x lower	1 to 1.5x lower	1 to 1.5x higher Above A	1.5 to 2x higher	2 to 2.5x higher	2.5 to 3x higher	>3.0x higher
(0.00011µg/m³)*	\leftarrow			DEIUW A	verage	A D O V E A	verage			\longrightarrow
BC			435,943 (9.9%)	28,403 (0.6%)	27,763 (0.6%)	2,456,137 (55.8%)	378,623 (8.6%)	394,808 (9.0%)	367,091 (8.3%)	311,289 (7.1%)
AB			2,205,063 (60.5%)	205,125 (5.6%)	384,711 (10.6%)	687,111 (18.8%)	74,116 (2.0%)	35,068 (1.0%)	25,773 (0.7%)	28,290 (0.8%)
SK			32,399 (31.5%)	21,231 (2.1%)	16,595 (1.6%)	425,431 (41.2%)	54,435 (5.3%)	40,040 (3.9%)	44,875 (4.3%)	105,375 (10.2%)
МВ			821,067 (68.0%)	86,894 (7.2%)	123,379 (10.2%)	136,662 (11.3%)	18,066 (1.5%)	6,764 (0.6%)	7,320 (0.6%)	8,116 (0.7%)
ON	938,382 (7.3%)	29,855 (0.2%)	2,032,560 (15.8%)	339,816 (2.6%)	411,332 (3.2%)	5,019,611 (39.1%)	852,495 (6.6%)	1,073,893 (8.4%)	541,573 (4.2%)	1,612,304 (12.5%)
QC			1,004,131 (12.7%)	62,242 (0.8%)	1,630,838 (20.6%)	2,042,678 (25.8%)	1,508,969 (19.1%)	608,291 (7.7%)	328,175 (4.2%)	717,677 (9.1%)
NB	89,973 (12.0%)	1,259 (0.2%)	233,217 (31.0%)	9,807 (138%)	14,665 (2.0%)	266,216 (35.4%)	25,216 (3.4%)	19,402 (2.6%)	23,443 (3.1%)	67,973 (9.0%)
NS			266,849 (29.0%)	11,066 (1.2%)	14,250 (1.5%)	448,188 (48.6%)	48,913 (53.1%)	35,495 (3.9%)	36,312 (3.9%)	60,654 (6.6%)
PE			49,274 (35.1%)	1,354 (1.0%)	2,587 (1.8%)	66,409 (44.1%)	5,128 (36.6%)	3,560 (2.5%)	3,426 (2.4%)	8,466 (6.0%)
NL			198,090 (38.5%)	7,335 (1.4%)	42,236 (8.2%)	181,545 (35.3%)	37,842 (7.4%)	19,157 (3.7%)	16,338 (3.2%)	11,993 (2.3%)
NU			31,906 (100.0%)							
NT			20,107 (48.5%)	298 (0.7%)	568 (1.4%)	17,240 (41.6%)	1,267 (0.3%)	685 (1.6%)	1,297 (3.1%)	0 (<0.1%)
YT			6,888 (20.3%)	176 (0.5%)	258 (0.8%)	18,445 (54.4%)	2,302 (6.8%)	1,574 (4.6%)	3,193 (9.4%)	1,061 (3.1%)
CANADA	1,028,355	31,114	7,630,494	773,747	2,669,182	11,765,673	3,007,372	2,238,737	1,398,816	2,933,198
% of pop.	(3.1%)	(0.1%)	(22.8%)	(2.3%)	(8.0%)	(35.1%)	(9.0%)	(6.7%)	(4.2%)	(8.8%)

ASSOCIATED LIFETIME EXCESS CANCER RISK (per million people):

RED = POTENTIAL LIFETIME EXCESS RISK IS GREATER THAN 1 PER MILLION PEOPLE

Health	<0.00011	0.00011 to	0.00013 to	0.00017 to	0.00022 to	0.00033 to	0.0005 to	0.0006 to	0.0008 to	> 0.001
Canada CPF: 0.13		< 0.00013	< 0.00017	< 0.00022	< 0.00033	< 0.0005	< 0.0006	< 0.0008	< 0.001	
011.0.15										
California	< 0.0033	0.0033 to	0.004 to	0.005 to	0.007 to	0.01 to	0.015 to	0.02 to	0.025 to	> 0.03
OEHHA		< 0.004	< 0.005	< 0.007	< 0.01	< 0.015	< 0.02	< 0.025	< 0.03	
CPF: 3.9										
US EPA										
CPF: No CPF										

^{*} measured at National Air Pollution Surveillance (NAPS) monitors in 2011 CPF: Cancer Potency Factor

Benzo[a]pyrene 13